IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v90y2016icp172-191.html
   My bibliography  Save this article

Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication

Author

Listed:
  • Jia, Dongyao
  • Ngoduy, Dong

Abstract

Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication are emerging components of intelligent transport systems (ITS) based on which vehicles can drive in a cooperative way and, hence, significantly improve traffic flow efficiency. However, due to the high vehicle mobility, the unreliable vehicular communications such as packet loss and transmission delay can impair the performance of the cooperative driving system (CDS). In addition, the downstream traffic information collected by roadside sensors in the V2I communication may introduce measurement errors, which also affect the performance of the CDS. The goal of this paper is to bridge the gap between traffic flow modelling and communication approaches in order to build up better cooperative traffic systems. To this end, we aim to develop an enhanced cooperative microscopic (car-following) traffic model considering V2V and V2I communication (or V2X for short), and investigate how vehicular communications affect the vehicle cooperative driving, especially in traffic disturbance scenarios. For these purposes, we design a novel consensus-based vehicle control algorithm for the CDS, in which not only the local traffic flow stability is guaranteed, but also the shock waves are supposed to be smoothed. The IEEE 802.11p, the defacto vehicular networking standard, is selected as the communication protocols, and the roadside sensors are deployed to collect the average speed in the targeted area as the downstream traffic reference. Specifically, the imperfections of vehicular communication as well as the measured information noise are taken into account. Numerical results show the efficiency of the proposed scheme. This paper attempts to theoretically investigate the relationship between vehicular communications and cooperative driving, which is needed for the future deployment of both connected vehicles and infrastructure (i.e. V2X).

Suggested Citation

  • Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
  • Handle: RePEc:eee:transb:v:90:y:2016:i:c:p:172-191
    DOI: 10.1016/j.trb.2016.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515302563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    2. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    3. Saifuzzaman, Mohammad & Zheng, Zuduo & Mazharul Haque, Md. & Washington, Simon, 2015. "Revisiting the Task–Capability Interface model for incorporating human factors into car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 1-19.
    4. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    5. Wang, Xiubin, 2007. "Modeling the process of information relay through inter-vehicle communication," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 684-700, July.
    6. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    7. Jin, Wen-Long & Recker, Wilfred W., 2006. "Instantaneous information propagation in a traffic stream through inter-vehicle communication," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 230-250, March.
    8. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Caihong & Wang, Ziyang & Wang, Shupei & Li, Ying, 2024. "Mitigating oscillations of mixed traffic flows at a signalized intersection: A multiagent trajectory optimization approach based on oscillation prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    2. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    3. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    4. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    5. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    6. Junyan Han & Jinglei Zhang & Xiaoyuan Wang & Yaqi Liu & Quanzheng Wang & Fusheng Zhong, 2020. "An Extended Car-Following Model Considering Generalized Preceding Vehicles in V2X Environment," Future Internet, MDPI, vol. 12(12), pages 1-15, November.
    7. Luo, Ying & Chen, Yanyan & Lu, Kaiming & Chen, Liang & Zhang, Jian, 2024. "Modeling and analysis of heterogeneous traffic flow considering dynamic information flow topology and driving behavioral characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    8. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    9. Cui, Ziyu & Wang, Xiaoning & Ci, Yusheng & Yang, Changyun & Yao, Jia, 2023. "Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    10. Maria Nadia Postorino & Giuseppe M. L. Sarné, 2020. "Reinventing Mobility Paradigms: Flying Car Scenarios and Challenges for Urban Mobility," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    11. Chaohui Zhang & Yijing Li & Yishan Zhang, 2020. "Competition and Game of the Pre-Installed Market and Post-Installed Market of the Internet of Vehicles from the Perspective of Cooperation," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    12. Hui, Fei & Wei, Cheng & ShangGuan, Wei & Ando, Ryosuke & Fang, Shan, 2022. "Deep encoder–decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    13. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    15. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    16. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    17. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Sun, Dihua & Chen, Dong & Zhao, Min & Liu, Weining & Zheng, Linjiang, 2018. "Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 293-307.
    19. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    20. Kang, Chengjun & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Zhang, Futao, 2024. "Analysis of stability, energy consumption and CO2 emissions in novel discrete-time car-following model with time delay under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    21. Liu, Bo & Zhang, Geng, 2021. "A double velocity control method for a discrete-time cooperative driving system with varying time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    22. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    23. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
    24. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    2. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    3. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    4. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    5. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    6. Calvert, Simeon C. & Schakel, Wouter J. & van Lint, J.W.C., 2020. "A generic multi-scale framework for microscopic traffic simulation part II – Anticipation Reliance as compensation mechanism for potential task overload," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 42-63.
    7. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish, 2019. "Is more always better? The impact of vehicular trajectory completeness on car-following model calibration and validation," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 49-75.
    8. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    9. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    10. Sun, Jie & Zheng, Zuduo & Sun, Jian, 2018. "Stability analysis methods and their applicability to car-following models in conventional and connected environments," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 212-237.
    11. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    12. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    13. Meng, Dongli & Song, Guohua & Huang, Jianchang & Lu, Hongyu & Wu, Yizheng & Yu, Lei, 2024. "Car-following model considering jerk-constrained acceleration stochastic process for emission estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    14. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    15. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    16. Jin, W L & Wang, Bruce, 2010. "Connectivity of vehicular ad hoc networks with continuous node distribution patterns," University of California Transportation Center, Working Papers qt1565f72s, University of California Transportation Center.
    17. Blanch Micó, Mª Teresa & Lucas Alba, Antonio & Bellés Rivera, Teresa & Ferruz Gracia, Ana Mª & Melchor Galán, Óscar M. & Delgado Pastor, Luis C. & Ruíz Jiménez, Francisco & Chóliz Montañés, Mariano, 2018. "Car following: Comparing distance-oriented vs. inertia-oriented driving techniques," Transport Policy, Elsevier, vol. 67(C), pages 13-22.
    18. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    19. Khelfa, Basma & Ba, Ibrahima & Tordeux, Antoine, 2023. "Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    20. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:90:y:2016:i:c:p:172-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.