IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005124.html
   My bibliography  Save this article

Modeling, implementation and experimental verification of eco-driving on a battery-electric heavy-duty vehicle

Author

Listed:
  • Heuts, Y.J.J.
  • Wouters, J.J.F.
  • Hulsebos, O.F.
  • Donkers, M.C.F.

Abstract

In this paper, an Eco-Driving Assistance System (EDAS) has been implemented on a fully electric heavy-duty vehicle and its performance has been validated using real-world experiments. The objective of the EDAS is to provide the driver with a recommendation on the vehicle’s optimal speed trajectory that minimizes its energy consumption over the entire trip. This requires solving a receding horizon optimal control problem, which, in this case, consists of a convex optimization problem and can be solved as a second-order cone program. Simulations were used to explore different prediction horizon lengths and move-blocking strategies of the underlying receding horizon optimal control problem, aiming to strike a balance between numerical complexity and energy savings. Finally, the method is implemented on an electric heavy-duty vehicle where an augmented speedometer is presented to the driver. Multiple tests with and without an EDAS have been performed, which resulted in a reduction of 6.5 %–12 % in energy consumption compared to when the vehicle was driven without the EDAS active.

Suggested Citation

  • Heuts, Y.J.J. & Wouters, J.J.F. & Hulsebos, O.F. & Donkers, M.C.F., 2025. "Modeling, implementation and experimental verification of eco-driving on a battery-electric heavy-duty vehicle," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005124
    DOI: 10.1016/j.apenergy.2025.125782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    2. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    3. Haubensak, Lukas & Strahl, Stephan & Braun, Jochen & Faulwasser, Timm, 2024. "Towards real-time capable optimal control for fuel cell vehicles using hierarchical economic MPC," Applied Energy, Elsevier, vol. 366(C).
    4. Liao, Peng & Tang, Tie-Qiao & Liu, Ronghui & Huang, Hai-Jun, 2021. "An eco-driving strategy for electric vehicle based on the powertrain," Applied Energy, Elsevier, vol. 302(C).
    5. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    6. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation," Applied Energy, Elsevier, vol. 304(C).
    7. Wu, Yue & Huang, Zhiwu & Li, Dongjun & Li, Heng & Peng, Jun & Stroe, Daniel & Song, Ziyou, 2024. "Optimal battery thermal management for electric vehicles with battery degradation minimization," Applied Energy, Elsevier, vol. 353(PA).
    8. Zhuang, Weichao & Li, Jinhui & Ju, Fei & Li, Bingbing & Liu, Haoji & Yin, Guodong, 2024. "Dual-objective eco-routing strategy for vehicles with different powertrain types," Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najmi, Aezid-Ul-Hassan & Wahab, Abdul & Prakash, Rohith & Schopen, Oliver & Esch, Thomas & Shabani, Bahman, 2025. "Thermal management of fuel cell-battery electric vehicles: Challenges and solutions," Applied Energy, Elsevier, vol. 387(C).
    2. Zhang, Baodi & Chang, Liang & Teng, Teng & Chen, Qifang & Li, Qiangwei & Cao, Yaoguang & Yang, Shichun & Zhang, Xin, 2024. "Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 373(C).
    3. Tian, Weiyong & Liu, Li & Zhang, Xiaohui & Shao, Jiaqi, 2024. "Flight trajectory and energy management coupled optimization for hybrid electric UAVs with adaptive sequential convex programming method," Applied Energy, Elsevier, vol. 364(C).
    4. Li, Xian-zhe & Zhang, Ming-zhu & Yan, Xiang-hai & Liu, Meng-nan & Xu, Li-you, 2023. "Power allocation strategy for fuel cell distributed drive electric tractor based on adaptive multi-resolution analysis theory," Energy, Elsevier, vol. 284(C).
    5. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    6. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Togun, Hussein & Basem, Ali & Abdulrazzaq, Tuqa & Biswas, Nirmalendu & Abed, Azher M. & dhabab, Jameel M. & Chattopadhyay, Anirban & Slimi, Khalifa & Paul, Dipankar & Barmavatu, Praveen & Chrouda, Ama, 2025. "Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV)," Applied Energy, Elsevier, vol. 388(C).
    8. Wang, Xin & Atkin, Jason & Bozhko, Serhiy, 2025. "Fault-tolerant hierarchical energy management system for an electrical power system on more-electric aircraft," Applied Energy, Elsevier, vol. 379(C).
    9. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    10. Faghihian, Hamed & Sargolzaei, Arman, 2025. "A novel energy-efficient automated regenerative braking system," Applied Energy, Elsevier, vol. 390(C).
    11. Ding, Yanyan & Jian, Sisi & Yu, Lin, 2025. "How to reduce carbon emissions in the urban transportation systems through carbon markets? Balancing the monetary and environmental benefits," Applied Energy, Elsevier, vol. 377(PB).
    12. Bhattacharyya, Sankhadeep & Dinh, Quang Truong & McGordon, Andrew, 2025. "Optimising thermoelectric coolers for battery thermal management in light electric vehicles," Applied Energy, Elsevier, vol. 386(C).
    13. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    14. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    15. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    16. Kofler, Sandro & Jakubek, Stefan & Hametner, Christoph, 2025. "Predictive energy management strategy with optimal stack start/stop control for fuel cell vehicles," Applied Energy, Elsevier, vol. 377(PB).
    17. Shi, Ting & Wang, Huaiyu & Yang, Wenming & Peng, Xueyuan, 2024. "Mathematical modeling and optimization of gas foil bearings-rotor system in hydrogen fuel cell vehicles," Energy, Elsevier, vol. 290(C).
    18. Mian, Shahid Hassan & Nazir, Muhammad Saqib & Ahmad, Iftikhar & Khan, Safdar Abbas, 2023. "Optimized nonlinear controller for fuel cell, supercapacitor, battery, hybrid photoelectrochemical and photovoltaic cells based hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    19. Li, Jie & Fotouhi, Abbas & Pan, Wenjun & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2023. "Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties," Energy, Elsevier, vol. 279(C).
    20. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.