IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4675-d1659558.html
   My bibliography  Save this article

System Modeling and Performance Simulation of a Full-Spectrum Solar-Biomass Combined Electricity-Heating-Cooling Multi-Generation System

Author

Listed:
  • Kai Ding

    (The College of Electrical Engineering, Shanghai DianJi University, Shanghai 201306, China)

  • Ximin Cao

    (The College of Electrical Engineering, Shanghai DianJi University, Shanghai 201306, China)

  • Yanchi Zhang

    (The College of Electrical Engineering, Shanghai DianJi University, Shanghai 201306, China)

Abstract

The reliance on fossil fuels poses significant challenges to the environment and sustainable development. To address the heating requirements of the pyrolysis process in a biomass gasification-based multi-generation system, this study explored the use of low-grade solar energy across the full solar spectrum to supply the necessary energy for biomass pyrolysis while leveraging high-grade solar energy in the short-wavelength spectrum for power generation. The proposed multi-generation system integrates the full solar spectrum, biomass gasification, gas turbine, and waste heat recovery unit to produce power, cooling, and heating. A detailed thermodynamic model of this integrated system was developed, and the energy and exergy efficiencies of each subsystem were evaluated. Furthermore, the system’s performance was assessed on both monthly and annual timescales by employing the hourly weather data for Hohhot in 2023. The results showed that the solar subsystem achieved its highest power output of around 2.5 MWh in July and the lowest of 0.7 MWh in December. The annual electrical output peaked at 10 MWh, occurring around noon in July and August, while the winter peak was typically 2–3 MWh. For the wind power subsystem, the power output was maximized in April at 5.17 MWh and minimized in August at 0.7 MWh. Additionally, considering the overall multi-generation system performance, the highest power output of 14.9 MWh was observed in April, with lower outputs of 10.9, 11.3, and 11.4 MWh from August to October, respectively. Overall, the system demonstrated impressive annual average energy and exergy efficiencies of 74.05% and 52.13%, respectively.

Suggested Citation

  • Kai Ding & Ximin Cao & Yanchi Zhang, 2025. "System Modeling and Performance Simulation of a Full-Spectrum Solar-Biomass Combined Electricity-Heating-Cooling Multi-Generation System," Sustainability, MDPI, vol. 17(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4675-:d:1659558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4675/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Cacciuttolo & Ximena Guardia & Eunice Villicaña, 2024. "Implementation of Renewable Energy from Solar Photovoltaic (PV) Facilities in Peru: A Promising Sustainable Future," Sustainability, MDPI, vol. 16(11), pages 1-40, May.
    2. Qu, Wanjun & Hong, Hui & Li, Qiang & Xuan, Yimin, 2018. "Co-producing electricity and solar syngas by transmitting photovoltaics and solar thermochemical process," Applied Energy, Elsevier, vol. 217(C), pages 303-313.
    3. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
    4. Bartosz Jóźwik & Aviral Kumar Tiwari & Antonina Viktoria Gavryshkiv & Kinga Galewska & Bahar Taş, 2024. "Energy–Growth Nexus in European Union Countries During the Green Transition," Sustainability, MDPI, vol. 16(24), pages 1-19, December.
    5. Sun, Bo & Lu, Lin & Chen, Jianheng & Ma, Tao & Yuan, Yanping, 2024. "Full-spectrum radiative cooling for enhanced thermal and electrical performance of bifacial solar photovoltaic modules: A nationwide quantitative analysis," Applied Energy, Elsevier, vol. 362(C).
    6. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    7. Hongmin Chen & Yingmei Xu, 2024. "Industry Energy Dependence Characteristics Under Different Energy Consumption Accounting Scopes: A Comparison Between China and the U.S," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    8. Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
    9. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    10. Xie, Nan & Xiao, Zhenyu & Du, Wei & Deng, Chengwei & Liu, Zhiqiang & Yang, Sheng, 2023. "Thermodynamic and exergoeconomic analysis of a proton exchange membrane fuel cell/absorption chiller CCHP system based on biomass gasification," Energy, Elsevier, vol. 262(PB).
    11. Minwei Liu & Jincan Zeng & Guori Huang & Xi Liu & Gengsheng He & Shangheng Yao & Nan Shang & Lixing Zheng & Peng Wang, 2024. "Assessing Energy Consumption, Carbon Emissions, and Costs in Biomass-to-Gas Processes: A Life-Cycle Assessment Approach," Sustainability, MDPI, vol. 16(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huijun Yan & Long Huo & Hong Gao & Xuanyi Li & Jianwei Bai, 2025. "Functionalized Polyethyleneimine Adsorbent for Efficient and Selective Uranium Extraction from Aqueous Solution," Sustainability, MDPI, vol. 17(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    2. Li, Ling-Ling & Qu, Li-Nan & Tseng, Ming-Lang & Lim, Ming K. & Ren, Xin-Yu & Miao, Yan, 2024. "Optimization and performance assessment of solar-assisted combined cooling, heating and power system systems: Multi-objective gradient-based optimizer," Energy, Elsevier, vol. 289(C).
    3. Keyong Hu & Qingqing Yang & Lei Lu & Yu Zhang & Shuifa Sun & Ben Wang, 2025. "Two-Stage Distributionally Robust Optimal Scheduling for Integrated Energy Systems Considering Uncertainties in Renewable Generation and Loads," Mathematics, MDPI, vol. 13(9), pages 1-30, April.
    4. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    5. Paniz Arashrad & Shayan Sharafi Laleh & Shayan Rabet & Mortaza Yari & Saeed Soltani & Marc A. Rosen, 2025. "Real-Time Modeling of a Solar-Driven Power Plant with Green Hydrogen, Electricity, and Fresh Water Production: Techno-Economics and Optimization," Sustainability, MDPI, vol. 17(8), pages 1-29, April.
    6. Nikiforakis, Ioannis & Mamalis, Sotirios & Assanis, Dimitris, 2025. "Understanding Solid Oxide Fuel Cell Hybridization: A Critical Review," Applied Energy, Elsevier, vol. 377(PC).
    7. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    8. Huang, Maoquan & Yang, Rui & Tang, G.H. & Pu, Jin Huan & Sun, Qie & Du, Mu, 2025. "Quantifying the effects of dust characteristics on the performance of radiative cooling PV systems," Applied Energy, Elsevier, vol. 377(PD).
    9. Cai, Benan & Gao, Ruihang & Zhao, Yuqi & Wang, Rong & Che, Xunjian & Tian, Jiameng & Cai, Weihua, 2024. "Comprehensive performance evaluation and advanced exergy analysis of the low-temperature proton exchange membrane fuel cell and spray flash desalination coupled system," Energy, Elsevier, vol. 313(C).
    10. Fang, Juan & Dong, Hao & Huo, Hailong & Yi, Xiaoping & Wen, Zhi & Liu, Qibin & Liu, Xunliang, 2023. "Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery," Applied Energy, Elsevier, vol. 332(C).
    11. Ji, Jie & Wen, Wenchao & Xie, Yingqi & Xia, Aoyun & Wang, Wenjie & Xie, Jinbo & Yin, Qingyuan & Ma, Mengyu & Huang, Hui & Huang, Xiaolong & Zhang, Chu & Wang, Yaodong, 2024. "Optimization and uncertainty analysis of Co-combustion ratios in a semi-isolated green energy combined cooling, heating, and power system (SIGE-CCHP)," Energy, Elsevier, vol. 302(C).
    12. Fu, Chao & Zhang, Wei & Li, Anxiang & Shen, Qingfei & Zhao, Ning & Cui, Zhiheng & Wang, Jiangjiang, 2024. "Exergy-water-carbon-cost nexus of a biomass-syngas-fueled fuel cell system integrated with organic Rankine cycle," Renewable Energy, Elsevier, vol. 231(C).
    13. You, Huailiang & Zhou, Xianqi & Chen, Daifen & Xiao, Yan & Hu, Bin & Li, Guoxiang & Han, Jitian & Lysyakov, Anatoly, 2025. "Techno-economic assessment of a novel combined cooling, heating, and power (CCHP) system driven by solid oxide fuel cell and solar thermal utilization," Renewable Energy, Elsevier, vol. 240(C).
    14. Tong Wang & Tuo Zhou & Chaoran Li & Qiang Song & Man Zhang & Hairui Yang, 2024. "Development Status and Prospects of Biomass Energy in China," Energies, MDPI, vol. 17(17), pages 1-25, September.
    15. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Li, Jinyu & Yang, Zhengda & Ge, Yi & Wang, Yiya & Dong, Qiwei & Wang, Xinwei & Lin, Riyi, 2024. "Performance study of photovoltaic-thermochemical hybrid system with Cassegrain concentrator and spectral splitting integration," Energy, Elsevier, vol. 292(C).
    17. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    18. Chen, Yuzhu & Yang, Kaifeng & Guo, Weimin & Hao, Shengwan & Du, Na & Yang, Kun & Lund, Peter D., 2025. "Cost-carbon-water nexus analysis of a biomass-wind-solar integrated cogeneration system: A system and ecological perspective," Energy, Elsevier, vol. 327(C).
    19. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    20. Wang, Zijun & Cao, Shaowen & Cai, Qilin & Zhang, Yingshi & Zhao, Defan & Liu, Ruizhi & Ye, Qing & Wu, Xi, 2025. "Investigation on a novel integrated system of radiative cooling and solar photovoltaics," Applied Energy, Elsevier, vol. 377(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4675-:d:1659558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.