IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040271.html
   My bibliography  Save this article

Novel graphical expression method of thermodynamic process parameters: Methodology and case study

Author

Listed:
  • Huang, Kunteng
  • Chen, Ruihua
  • Xu, Weicong
  • Wang, Hao
  • Lu, Pei
  • Huang, Yisheng
  • Zhao, Dongpeng
  • Deng, Shuai
  • Zhao, Li

Abstract

Graphical methods are among the techniques for quantitatively describing energy conversion processes, which also serve as an important technical pathway to improve energy conversion efficiency. For systems under dynamic boundary conditions, traditional thermodynamic state parameters often prove insufficient in comprehensively characterizing the energy conversion process. To fill this gap, this study proposes a novel graphical method called the Energy-Energy (E-E) diagram, which employs different energy forms (thermodynamic process parameters) as coordinate axes while drawing an analogy between energy conversion to rotational motion of a circle. By representing the radius length (r) and rotation angle (θ) to the total system energy and energy conversion efficiency respectively, the E-E diagram can characterize the energy conservation (1st Laws of Thermodynamics) and global system performance (2nd Laws of Thermodynamics). Local system performance variations during energy conversion processes are revealed through slope (k) changes along the heat source capacity curve. When applied to an organic Rankine cycle system under finite heat capacity boundary conditions, the combination analysis of E-E diagram and Temperature-entropy diagram (at instantaneous states) provides comprehensive insights into both system performance variations and pinch point location variations. The E-E diagram enables intuitive visualization of performance differences among systems with varying operating conditions, establishing a novel framework for characterizing dynamic system performance.

Suggested Citation

  • Huang, Kunteng & Chen, Ruihua & Xu, Weicong & Wang, Hao & Lu, Pei & Huang, Yisheng & Zhao, Dongpeng & Deng, Shuai & Zhao, Li, 2025. "Novel graphical expression method of thermodynamic process parameters: Methodology and case study," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040271
    DOI: 10.1016/j.energy.2024.134249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
    2. You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
    3. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    4. Liu, Shuilong & Bai, Tao & Wei, Yuan & Yu, Jianlin, 2023. "Performance analysis of a modified ejector-enhanced auto-cascade refrigeration cycle," Energy, Elsevier, vol. 265(C).
    5. Li, Shuangjun & Deng, Shuai & Zhao, Li & Yuan, Xiangzhou & Yun, Heesun, 2020. "How to express the adsorbed CO2 with the Gibbs’ thermodynamic graphical method: A preliminary study," Energy, Elsevier, vol. 193(C).
    6. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Wang, Zefeng & Han, Wei & Zhang, Na & Gan, Zhongxue & Sun, Jie & Jin, Hongguang, 2018. "Energy level difference graphic analysis method of combined cooling, heating and power systems," Energy, Elsevier, vol. 160(C), pages 1069-1077.
    8. Jiang, Xi Zhuo & Wang, Xiangyu & Feng, Lejun & Zheng, Danxing & Shi, Lin, 2017. "Adapted computational method of energy level and energy quality evolution for combined cooling, heating and power systems with energy storage units," Energy, Elsevier, vol. 120(C), pages 209-216.
    9. Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
    10. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    11. Zhi, Keke & Wang, Bohong & Guo, Lianghui & Chen, Yujie & Li, Wei & Ocłoń, Paweł & Wang, Jin & Chen, Yuping & Tao, Hengcong & Li, Xinze & Varbanov, Petar Sabev, 2024. "Graphical pinch analysis-based method for heat exchanger networks retrofit of a residuum hydrogenation process," Energy, Elsevier, vol. 299(C).
    12. Xu, Sheng-Zhi & Guo, Zeng-Yuan, 2021. "Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles," Energy, Elsevier, vol. 224(C).
    13. Su, Wen & Zhao, Li & Deng, Shuai & Xu, Weicong & Yu, Zhixin, 2018. "A limiting efficiency of subcritical Organic Rankine cycle under the constraint of working fluids," Energy, Elsevier, vol. 143(C), pages 458-466.
    14. Huang, Yisheng & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2022. "Performance explorations of an organic Rankine cycle featured with separating and mixing composition of zeotropic mixture," Energy, Elsevier, vol. 257(C).
    15. Xu, Jiacheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying, 2023. "Towards cost-effective osmotic power harnessing: Mass exchanger network synthesis for multi-stream pressure-retarded osmosis systems," Applied Energy, Elsevier, vol. 330(PA).
    16. Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
    17. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "A contemporary description of the Carnot cycle featured by chemical work from equilibrium: The electrochemical Carnot cycle," Energy, Elsevier, vol. 280(C).
    2. Huang, Weijia & Zheng, Danxing & Chen, Xiaohui & Shi, Lin & Dai, Xiaoye & Chen, Youhui & Jing, Xuye, 2020. "Standard thermodynamic properties for the energy grade evaluation of fossil fuels and renewable fuels," Renewable Energy, Elsevier, vol. 147(P1), pages 2160-2170.
    3. Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
    4. Chen, Ruihua & Xu, Weicong & Deng, Shuai & Zhao, Ruikai & Choi, Siyoung Q. & Zhao, Li, 2023. "Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations," Energy, Elsevier, vol. 284(C).
    5. Huang, Yisheng & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2022. "Performance explorations of an organic Rankine cycle featured with separating and mixing composition of zeotropic mixture," Energy, Elsevier, vol. 257(C).
    6. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
    7. Yi, Yuhao & Xie, Xiaoyun & Zhang, Hao & Jiang, Yi, 2024. "Theoretical perfection and application of entransy analysis method on absorption systems," Energy, Elsevier, vol. 307(C).
    8. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    9. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    10. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    11. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    12. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    13. Siddiqui, Muhammad Ehtisham & Almatrafi, Eydhah & Bamasag, Ahmad & Saeed, Usman, 2022. "Adoption of CO2-based binary mixture to operate transcritical Rankine cycle in warm regions," Renewable Energy, Elsevier, vol. 199(C), pages 1372-1380.
    14. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    15. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    16. Su-Been Lee & Chang-Hyo Son & Joon-Hyuk Lee, 2024. "A Novel Approach of −80 °C Cascade Refrigeration System Using Non-Flammable Quaternary Refrigerants for Semiconductor Process Applications," Energies, MDPI, vol. 17(23), pages 1-22, December.
    17. Mu, Ruiqi & Liu, Ming & Huang, Yan & Chong, Daotong & Hu, Zhiping & Yan, Junjie, 2024. "Proposal and performance analysis of a novel hydrogen and power cogeneration system with CO2 capture based on coal supercritical water gasification," Energy, Elsevier, vol. 305(C).
    18. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    19. Li, Yinlong & Yan, Gang & Yang, Yuqing & Dong, Peiwen & Liu, Guoqiang, 2024. "Thermodynamic analysis of new configurations of auto-cascade refrigeration cycles integrating the vortex tube," Energy, Elsevier, vol. 308(C).
    20. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.