IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002878.html
   My bibliography  Save this article

Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction

Author

Listed:
  • Zhang, Peiye
  • Liu, Ming
  • Mu, Ruiqi
  • Yan, Junjie

Abstract

The parabolic trough solar receiver-reactors of methanol decomposition reaction (PTSRR-MDR) enable efficient hydrogen production with solar energy at users’ end. Solar fluctuations affect the solar-to-chemical efficiency, hydrogen yield and system stability, indicating the necessity for an appropriate control strategy. In this study, dynamic and thermodynamic models of PTSRR-MDR with Cu/ZnO/Al2O3 as catalyst were developed. Results of thermodynamic analysis show that an optimal flow rate exists for methanol to achieve the maximum solar-to-chemical exergy efficiency of the PTSRR-MDR. The temperature increases sharply and exceeds the catalyst sintering temperature when the methanol flow rate decreases under its optimal value. Then, control objectives to achieve the maximum efficiency are obtained with a temperature margin of 3 °C to guarantee the PTSRR-MDR safety. Control strategies based on Dynamic Matrix Control (DMC), Forward-Feedback Control (FFC) and Ramp Control (RC) were evaluated under dynamic simulations. Results show that strategies based on DMC, FFC, and RC increase the solar-to-chemical exergy efficiency from 14.76% to 16.31%, 16.28%, and 15.65%, respectively. The Integral Squared Error (ISE) of methanol conversion rate under three methods are 1.46, 0.32 and 5.28, respectively, indicating that strategy based on FFC is considered most suitable for PTSRR-MDR operation control.

Suggested Citation

  • Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002878
    DOI: 10.1016/j.renene.2024.120222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.