IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222022319.html
   My bibliography  Save this article

Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions

Author

Listed:
  • Yan, Hui
  • Liu, Ming
  • Wang, Zhu
  • Zhang, Kezhen
  • Chong, Daotong
  • Yan, Junjie

Abstract

The integration of solar thermal energy into the coal-fired power plant is a cost-effective method to compensate for the solar energy intermittency. With the increasing penetration of renewable energy in the power grid, the solar-aided coal-fired power plant (SACFPP) should undertake peak-shaving tasks, which receives little attention in previous studies. This study examines the SACFPP flexibility and finds out that the reheat steam temperature easily exceeding the safety range limits the maximum load cycling rate during processes simultaneously accompanied with direct normal irradiance (DNI) disturbances. An improved control strategy is proposed accordingly to enhance the SACFPP flexibility. The feedforward control signal to regulate the flue gas damper is generated corresponding to the DNI and load cycling requirements. The effectiveness of the proposed control under sunny/cloud cover cases and actual conditions is verified. Results show that the maximum load cycling rate of a 660 MW SACFPP increases from 3.3 MW min−1to 13.2/13.2/9.9 MW min−1 under sunny/light cloud cover/strong cloud cover cases, respectively. The reheat steam temperature deviations are reduced from 9.7 °C to 4.0 °C and 18.6 °C to 4.0 °C, when DNI step decreases from 700 W m−2 to 400 W m−2 and 0 W m−2 in load up processes, respectively.

Suggested Citation

  • Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022319
    DOI: 10.1016/j.energy.2022.125349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Zhao, Jin & Yang, Yongping, 2019. "Stabilizing operation of a solar aided power generation (SAPG) plant by adjusting the burners’ tilt and attemperation flows in the boiler," Energy, Elsevier, vol. 173(C), pages 1208-1220.
    2. Garbrecht, Oliver & Bieber, Malte & Kneer, Reinhold, 2017. "Increasing fossil power plant flexibility by integrating molten-salt thermal storage," Energy, Elsevier, vol. 118(C), pages 876-883.
    3. Li, Jianlan & Xin, Yu & Hu, Bo & Zeng, Kuo & Wu, Zhiyi & Fan, Shiwang & Li, Yuanyuan & Chen, Yongzhao & Wang, Shunjiang & Wang, Jizhou & Min, Yong & Li, Jun & Flamant, Gilles, 2021. "Safety and thermal efficiency performance assessment of solar aided coal-fired power plant based on turbine steam double reheat," Energy, Elsevier, vol. 226(C).
    4. Trojan, Marcin & Taler, Dawid & Dzierwa, Piotr & Taler, Jan & Kaczmarski, Karol & Wrona, Jan, 2019. "The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit," Energy, Elsevier, vol. 173(C), pages 926-936.
    5. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    6. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    7. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    8. Shagdar, Enkhbayar & Shuai, Yong & Lougou, Bachirou Guene & Mustafa, Azeem & Choidorj, Dashpuntsag & Tan, Heping, 2022. "New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis," Energy, Elsevier, vol. 238(PC).
    9. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    10. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    11. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    12. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    13. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    14. Zhai, Rongrong & Peng, Pan & Yang, Yongping & Zhao, Miaomiao, 2014. "Optimization study of integration strategies in solar aided coal-fired power generation system," Renewable Energy, Elsevier, vol. 68(C), pages 80-86.
    15. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    16. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    17. Wang, Chaoyang & Liu, Ming & Li, Bingxin & Liu, Yiwen & Yan, Junjie, 2017. "Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit," Energy, Elsevier, vol. 122(C), pages 505-527.
    18. Yan, Hui & Liu, Ming & Chong, Daotong & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses," Energy, Elsevier, vol. 236(C).
    19. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    20. Sun, Yang & Wang, Ligang & Xu, Cheng & Van herle, Jan & Maréchal, François & Yang, Yongping, 2020. "Enhancing the operational flexibility of thermal power plants by coupling high-temperature power-to-gas," Applied Energy, Elsevier, vol. 263(C).
    21. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    22. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.
    23. Peng, Shuo & Hong, Hui & Wang, Yanjuan & Wang, Zhaoguo & Jin, Hongguang, 2014. "Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China," Applied Energy, Elsevier, vol. 130(C), pages 500-509.
    24. Li, Mengying & Chu, Yinghao & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts," Renewable Energy, Elsevier, vol. 86(C), pages 1362-1371.
    25. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    26. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
    27. Yin, Junjie & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    2. Gao, Wei & Liu, Ming & Yin, Junjie & Zhao, Yongliang & Chen, Weixiong & Yan, Junjie, 2023. "An improved control strategy for a denitrification system using cooperative control of NH3 injection and flue gas temperature for coal-fired power plants," Energy, Elsevier, vol. 282(C).
    3. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    4. Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.
    5. Chunlai Yang & Xiaoguang Hao & Qijun Zhang & Heng Chen & Zhe Yin & Fei Jin, 2023. "Performance Analysis of a 300 MW Coal-Fired Power Unit during the Transient Processes for Peak Shaving," Energies, MDPI, vol. 16(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Hui & Chong, Daotong & Wang, Zhu & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2022. "Dynamic performance enhancement of solar-aided coal-fired power plant by control strategy optimization with solar/coal-to-power conversion characteristics," Energy, Elsevier, vol. 244(PA).
    2. Wang, Zhu & Liu, Ming & Yan, Hui & Yan, Junjie, 2022. "Optimization on coordinate control strategy assisted by high-pressure extraction steam throttling to achieve flexible and efficient operation of thermal power plants," Energy, Elsevier, vol. 244(PA).
    3. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    4. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    5. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    6. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Liu, Kairui & Wang, Chao & Wang, Limin & Liu, Bin & Ye, Maojing & Guo, Yalong & Che, Defu, 2023. "Dynamic performance analysis and control strategy optimization for supercritical coal-fired boiler: A dynamic simulation," Energy, Elsevier, vol. 282(C).
    8. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    9. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    10. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    11. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    12. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    13. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    14. Chunlai Yang & Xiaoguang Hao & Qijun Zhang & Heng Chen & Zhe Yin & Fei Jin, 2023. "Performance Analysis of a 300 MW Coal-Fired Power Unit during the Transient Processes for Peak Shaving," Energies, MDPI, vol. 16(9), pages 1-17, April.
    15. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    16. Yan, Hui & Liu, Ming & Chong, Daotong & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses," Energy, Elsevier, vol. 236(C).
    17. Jianjun Wang & Jikun Huo & Shuo Zhang & Yun Teng & Li Li & Taoya Han, 2021. "Flexibility Transformation Decision-Making Evaluation of Coal-Fired Thermal Power Units Deep Peak Shaving in China," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    18. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    19. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.
    20. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.