IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022532.html
   My bibliography  Save this article

New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis

Author

Listed:
  • Shagdar, Enkhbayar
  • Shuai, Yong
  • Lougou, Bachirou Guene
  • Mustafa, Azeem
  • Choidorj, Dashpuntsag
  • Tan, Heping

Abstract

The hybridization of solar energy with a coal-fired power plant is a promising way to reduce the numerous environmental issues related to a coal-based power generation sector. This paper examines a novel integration mechanism of solar energy into a 300 MW coal-fired power plant to improve the performance and techno-economic feasibility of the proposed system while decreasing pollutant emissions by coal consumption reduction. The concept of a novel integration mechanism includes replacing a part of the steam being used in the steam turbine of the proposed system with steam produced using the solar field installed near the power plant. The performance and techno-economic analysis of a 300 MW solar coal hybrid power generation (SCHPG) system were investigated under four different reference days (i.e. 22nd of March, 22nd of June, 22nd of September, and 22nd of December). Although the results revealed that the SCHPG system can operate well over the year, it exhibited the highest performance and techno-economic feasibility for the 22nd of June due to the higher direct normal irradiance and small incidence angle. In contrast, the lowest performance and techno-economic feasibility occurred on the 22nd of December. Besides, the performance and techno-economic feasibility for the 22nd of March and 22nd of September are almost similar.

Suggested Citation

  • Shagdar, Enkhbayar & Shuai, Yong & Lougou, Bachirou Guene & Mustafa, Azeem & Choidorj, Dashpuntsag & Tan, Heping, 2022. "New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022532
    DOI: 10.1016/j.energy.2021.122005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2017. "Solar parallel feed water heating repowering of a steam power plant: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 474-485.
    2. Bakos, G.C. & Tsechelidou, Ch., 2013. "Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field," Renewable Energy, Elsevier, vol. 60(C), pages 540-547.
    3. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
    4. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    5. Hong-juan, Hou & Zhen-yue, Yu & Yong-ping, Yang & Si, Chen & Na, Luo & Junjie, Wu, 2013. "Performance evaluation of solar aided feedwater heating of coal-fired power generation (SAFHCPG) system under different operating conditions," Applied Energy, Elsevier, vol. 112(C), pages 710-718.
    6. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    7. López, Juan Camilo & Escobar, Alejandro & Cárdenas, Daniel Alejandro & Restrepo, Álvaro, 2021. "Parabolic trough or linear fresnel solar collectors? An exergy comparison of a solar-assisted sugarcane cogeneration power plant," Renewable Energy, Elsevier, vol. 165(P1), pages 139-150.
    8. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
    9. Zhang, Nan & Yu, Gang & Huang, Chang & Duan, Liqiang & Hou, Hongjuan & Hu, Eric & Ding, Zeyu & Wang, Jianhua, 2020. "Full-day dynamic characteristics analysis of a solar aided coal-fired power plant in fuel saving mode," Energy, Elsevier, vol. 208(C).
    10. Peng, Shuo & Hong, Hui & Wang, Yanjuan & Wang, Zhaoguo & Jin, Hongguang, 2014. "Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China," Applied Energy, Elsevier, vol. 130(C), pages 500-509.
    11. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    12. Heng Zhang & Na Wang & Kai Liang & Yang Liu & Haiping Chen, 2021. "Research on the Performance of Solar Aided Power Generation System Based on Annular Fresnel Solar Concentrator," Energies, MDPI, vol. 14(6), pages 1-23, March.
    13. Li, Jianlan & Xin, Yu & Hu, Bo & Zeng, Kuo & Wu, Zhiyi & Fan, Shiwang & Li, Yuanyuan & Chen, Yongzhao & Wang, Shunjiang & Wang, Jizhou & Min, Yong & Li, Jun & Flamant, Gilles, 2021. "Safety and thermal efficiency performance assessment of solar aided coal-fired power plant based on turbine steam double reheat," Energy, Elsevier, vol. 226(C).
    14. Hong, Hui & Peng, Shuo & Zhang, Hao & Sun, Jie & Jin, Hongguang, 2017. "Performance assessment of hybrid solar energy and coal-fired power plant based on feed-water preheating," Energy, Elsevier, vol. 128(C), pages 830-838.
    15. Wu, Junjie & Hou, Hongjuan & Yang, Yongping & Hu, Eric, 2015. "Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity," Applied Energy, Elsevier, vol. 157(C), pages 123-133.
    16. Muhammad Khurram Khan, 2020. "Technological advancements and 2020," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(1), pages 1-2, January.
    17. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Yang, Yongping & Wang, Lu & Zhao, Jin, 2019. "Performance maximization of a solar aided power generation (SAPG) plant with a direct air-cooled condenser in power-boosting mode," Energy, Elsevier, vol. 175(C), pages 891-899.
    18. Zhao, Yawen & Hong, Hui & Jin, Hongguang, 2017. "Optimization of the solar field size for the solar–coal hybrid system," Applied Energy, Elsevier, vol. 185(P2), pages 1162-1172.
    19. Ortega-Fernández, Iñigo & Hernández, Ana Belén & Wang, Yang & Bielsa, Daniel, 2021. "Performance assessment of an oil-based packed bed thermal energy storage unit in a demonstration concentrated solar power plant," Energy, Elsevier, vol. 217(C).
    20. Wu, Junjie & Han, Yu & Hou, Hongjuan & Sun, Yingying, 2020. "Optimization of solar field layout and flow velocity in a solar-aided power generation system," Energy, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Yu & Sun, Yingying & Wu, Junjie, 2024. "An efficient and low-cost solar-aided lignite drying power generation system based on cascade utilisation of concentrating and non-concentrating solar energy," Energy, Elsevier, vol. 289(C).
    2. Li, Chao & Sun, Yang & Bi, Tianjiao & Zhai, Rongrong, 2023. "Performance enhancement of a solar-assisted pulverized coal power system by integrating a supercritical CO2 cycle," Renewable Energy, Elsevier, vol. 219(P1).
    3. Han, Zhixin & Fang, Debin & Yang, Peiwen & Lei, Leyao, 2023. "Cooperative mechanisms for multi-energy complementarity in the electricity spot market," Energy Economics, Elsevier, vol. 127(PB).
    4. Han, Yu & Sun, Yingying & Wu, Junjie, 2023. "A novel solar-driven waste heat recovery system in solar-fuel hybrid power plants," Energy, Elsevier, vol. 285(C).
    5. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    6. Li, Chao & Zhai, Rongrong, 2024. "A novel solar tower assisted pulverized coal power system considering solar energy cascade utilization: Performance analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    2. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    3. Jun Zhao & Kun Yang, 2020. "Analysis of CO 2 Abatement Cost of Solar Energy Integration in a Solar-Aided Coal-Fired Power Generation System in China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    4. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
    5. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    6. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    7. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    8. Qin, Jiyun & Zhang, Qinglei & Hu, Eric & Duan, Jianguo & Zhou, Ying & Zhang, Hongsheng, 2022. "Optimisation of Solar Aided Power Generation plant with storage system adopting two non-displaced extraction steam operation strategies," Energy, Elsevier, vol. 239(PA).
    9. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    10. Han, Yu & Sun, Yingying & Wu, Junjie, 2021. "A low-cost and efficient solar/coal hybrid power generation mode: Integration of non-concentrating solar energy and air preheating process," Energy, Elsevier, vol. 235(C).
    11. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    12. Wu, Junjie & Han, Yu, 2023. "Integration strategy optimization of solar-aided combined heat and power (CHP) system," Energy, Elsevier, vol. 263(PC).
    13. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    14. Burin, Eduardo Konrad & Buranello, Leonardo & Giudice, Pedro Lo & Vogel, Tobias & Görner, Klaus & Bazzo, Edson, 2015. "Boosting power output of a sugarcane bagasse cogeneration plant using parabolic trough collectors in a feedwater heating scheme," Applied Energy, Elsevier, vol. 154(C), pages 232-241.
    15. Han, Yu & Sun, Yingying & Wu, Junjie, 2023. "A novel solar-driven waste heat recovery system in solar-fuel hybrid power plants," Energy, Elsevier, vol. 285(C).
    16. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    17. Kamath, Harsh G. & Majumdar, Rudrodip & Krishnan, A.V. & Srikanth, R., 2022. "Cost and environmental benefits of coal-concentrated solar power (CSP) hybridization in India," Energy, Elsevier, vol. 240(C).
    18. Yong Zhu & Rongrong Zhai & Yongping Yang & Miguel Angel Reyes-Belmonte, 2017. "Techno-Economic Analysis of Solar Tower Aided Coal-Fired Power Generation System," Energies, MDPI, vol. 10(9), pages 1-26, September.
    19. Li, Chao & Sun, Yang & Bi, Tianjiao & Zhai, Rongrong, 2023. "Performance enhancement of a solar-assisted pulverized coal power system by integrating a supercritical CO2 cycle," Renewable Energy, Elsevier, vol. 219(P1).
    20. Heng Zhang & Na Wang & Kai Liang & Yang Liu & Haiping Chen, 2021. "Research on the Performance of Solar Aided Power Generation System Based on Annular Fresnel Solar Concentrator," Energies, MDPI, vol. 14(6), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.