IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1392-d111903.html
   My bibliography  Save this article

Techno-Economic Analysis of Solar Tower Aided Coal-Fired Power Generation System

Author

Listed:
  • Yong Zhu

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Rongrong Zhai

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Yongping Yang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Miguel Angel Reyes-Belmonte

    (IMDEA Energy Institute, Ramon de la Sagra 3, 28935 Móstoles, Spain)

Abstract

In this paper, we conduct a techno-economic analysis of a 1000 MWe solar tower aided coal-fired power generation system for the whole life cycle. Firstly, the power output (from coal and solar thermal energy) under variable direct normal irradiance and grid demand are studied. Secondly, a financial assessment is performed, including profits and losses of the plant project. Thirdly, sensitivity analysis is taken on some external factors that can affect the cost or profits and losses of the plant project. The results indicate that the project has high profits with an internal rate of return (IRR) of 8.7%. In addition, the effects of solar tower field cost, power purchase agreement (PPA) price of solar thermal electricity, coal price, and the interest rate of debt on the main criteria decrease gradually. Therefore, it is better to improve solar tower technology first, and then look for low-interest debts from banks to cope with the reduction of PPA price of solar thermal electricity and the increase of coal price. Despite the introduction of solar tower field increasing levelized cost of electricity (LCOE), it contributes to the reduction of CO 2 capture cost compared to the case of standard coal-fired power plants.

Suggested Citation

  • Yong Zhu & Rongrong Zhai & Yongping Yang & Miguel Angel Reyes-Belmonte, 2017. "Techno-Economic Analysis of Solar Tower Aided Coal-Fired Power Generation System," Energies, MDPI, vol. 10(9), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1392-:d:111903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan, Liqiang & Xia, Kun & Feng, Tao & Jia, Shilun & Bian, Jing, 2016. "Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system," Energy, Elsevier, vol. 117(P2), pages 578-589.
    2. Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
    3. Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.
    4. Zhai, Rongrong & Liu, Hongtao & Li, Chao & Zhao, Miaomiao & Yang, Yongping, 2016. "Analysis of a solar-aided coal-fired power generation system based on thermo-economic structural theory," Energy, Elsevier, vol. 102(C), pages 375-387.
    5. Boukelia, T.E. & Mecibah, M.S. & Kumar, B.N. & Reddy, K.S., 2015. "Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt," Energy, Elsevier, vol. 88(C), pages 292-303.
    6. Zhai, Rongrong & Zhao, Miaomiao & Tan, Kaiyu & Yang, Yongping, 2015. "Optimizing operation of a solar-aided coal-fired power system based on the solar contribution evaluation method," Applied Energy, Elsevier, vol. 146(C), pages 328-334.
    7. Yang, Yongping & Guo, Xiyan & Wang, Ningling, 2010. "Power generation from pulverized coal in China," Energy, Elsevier, vol. 35(11), pages 4336-4348.
    8. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    9. Zhai, Rongrong & Peng, Pan & Yang, Yongping & Zhao, Miaomiao, 2014. "Optimization study of integration strategies in solar aided coal-fired power generation system," Renewable Energy, Elsevier, vol. 68(C), pages 80-86.
    10. ChunLei Yang & Sven Modell, 2013. "Power and performance," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 26(1), pages 101-132, January.
    11. Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
    12. Peng, Shuo & Hong, Hui & Wang, Yanjuan & Wang, Zhaoguo & Jin, Hongguang, 2014. "Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China," Applied Energy, Elsevier, vol. 130(C), pages 500-509.
    13. Wang, Xiaoting & Kurdgelashvili, Lado & Byrne, John & Barnett, Allen, 2011. "The value of module efficiency in lowering the levelized cost of energy of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4248-4254.
    14. Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
    15. Zhao, Yawen & Hong, Hui & Jin, Hongguang, 2017. "Optimization of the solar field size for the solar–coal hybrid system," Applied Energy, Elsevier, vol. 185(P2), pages 1162-1172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    2. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    3. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    4. Yi Yuan & Yingjie Li & Jianli Zhao, 2018. "Development on Thermochemical Energy Storage Based on CaO-Based Materials: A Review," Sustainability, MDPI, vol. 10(8), pages 1-24, July.
    5. Sun, Zhuang & Aziz, Muhammad, 2022. "Solar-assisted biomass chemical looping gasification in an indirect coupling: Principle and application," Applied Energy, Elsevier, vol. 323(C).
    6. Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.
    7. Li, Chao & Zhai, Rongrong, 2024. "A novel solar tower assisted pulverized coal power system considering solar energy cascade utilization: Performance analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 222(C).
    8. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    2. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    3. Jun Zhao & Kun Yang, 2020. "Allocating Output Electricity in a Solar-Aided Coal-Fired Power Generation System and Assessing Its CO 2 Emission Reductions in China," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    4. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    5. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    6. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    7. Li, Jianlan & Xin, Yu & Hu, Bo & Zeng, Kuo & Wu, Zhiyi & Fan, Shiwang & Li, Yuanyuan & Chen, Yongzhao & Wang, Shunjiang & Wang, Jizhou & Min, Yong & Li, Jun & Flamant, Gilles, 2021. "Safety and thermal efficiency performance assessment of solar aided coal-fired power plant based on turbine steam double reheat," Energy, Elsevier, vol. 226(C).
    8. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    9. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    10. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    11. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    12. Zhai, Rongrong & Zhao, Miaomiao & Tan, Kaiyu & Yang, Yongping, 2015. "Optimizing operation of a solar-aided coal-fired power system based on the solar contribution evaluation method," Applied Energy, Elsevier, vol. 146(C), pages 328-334.
    13. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
    14. Jun Zhao & Kun Yang, 2020. "Analysis of CO 2 Abatement Cost of Solar Energy Integration in a Solar-Aided Coal-Fired Power Generation System in China," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    15. Wang, Ruilin & Sun, Jie & Hong, Hui & Jin, Hongguang, 2018. "Comprehensive evaluation for different modes of solar-aided coal-fired power generation system under common framework regarding both coal-savability and efficiency-promotability," Energy, Elsevier, vol. 143(C), pages 151-167.
    16. Zhang, Hongsheng & Zhao, Hongbin & Li, Zhenlin, 2016. "Thermodynamic performance study on solar-assisted absorption heat pump cogeneration system in the coal-fired power plant," Energy, Elsevier, vol. 116(P1), pages 942-955.
    17. Zhao, Yawen & Hong, Hui & Jin, Hongguang, 2017. "Optimization of the solar field size for the solar–coal hybrid system," Applied Energy, Elsevier, vol. 185(P2), pages 1162-1172.
    18. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    19. Zhai, Rongrong & Liu, Hongtao & Li, Chao & Zhao, Miaomiao & Yang, Yongping, 2016. "Analysis of a solar-aided coal-fired power generation system based on thermo-economic structural theory," Energy, Elsevier, vol. 102(C), pages 375-387.
    20. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1392-:d:111903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.