IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1766-1781.html
   My bibliography  Save this article

Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production

Author

Listed:
  • Cheng, Ze-Dong
  • Men, Jing-Jing
  • He, Ya-Ling
  • Tao, Yu-Bing
  • Ma, Zhao

Abstract

In this paper, novel parabolic trough solar receiver-reactors (PTSRR) of gradually-varied porosity catalyst beds are proposed for cost-efficient hydrogen production. A three-dimensional comprehensive model was developed for PTSRRs of the methanol-steam reforming reaction (MSRR) in porous Cu/ZnO/Al2O3 catalyst packed beds, by combining the finite volume method (FVM) and the Monte Carlo ray-tracing (MCRT) method with a MSRR comprehensive kinetic model. The validated model was applied to investigate different novel PTSRRs proposed, as well as the effects and mechanisms of different non-uniform porosity distributions, taking the methanol flow rate, the catalyst temperature limitation and the solar flux nonuniformity into account. It is revealed that the catalyst particles packed in the top part of the traditional absorber-reactor may not only have not fully played their roles but also influenced the multicomponent gas mixture fluid flow and heat transfer greatly. The non-uniform porosity catalyst bed gradually-increased from the bottom to the top better matches previously non-uniform temperature distributions and thus makes PTSRRs operated more safely, more efficiently yet lower cost of locally less packed catalyst mass. This comprehensive model and method offers a useful option of high potential for comprehensive analyses of the whole photo-thermal-chemical conversion process for different PTSRRs and realistic conditions.

Suggested Citation

  • Cheng, Ze-Dong & Men, Jing-Jing & He, Ya-Ling & Tao, Yu-Bing & Ma, Zhao, 2019. "Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production," Renewable Energy, Elsevier, vol. 143(C), pages 1766-1781.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1766-1781
    DOI: 10.1016/j.renene.2019.05.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, P. & Liu, D.Y. & Xu, C., 2013. "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams," Applied Energy, Elsevier, vol. 102(C), pages 449-460.
    2. Said, Syed A.M. & Waseeuddin, Mohammed & Simakov, David S.A., 2016. "A review on solar reforming systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 149-159.
    3. Hong, Hui & Liu, Qibin & Jin, Hongguang, 2012. "Operational performance of the development of a 15kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production," Applied Energy, Elsevier, vol. 90(1), pages 137-141.
    4. Cheng, Z.D. & He, Y.L. & Cui, F.Q., 2013. "A new modelling method and unified code with MCRT for concentrating solar collectors and its applications," Applied Energy, Elsevier, vol. 101(C), pages 686-698.
    5. Chein, Reiyu & Chen, Yen-Cho & Chung, J.N., 2013. "Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production," Applied Energy, Elsevier, vol. 102(C), pages 1022-1034.
    6. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    7. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    8. Aichouba, Asma & Merzouk, Mustapha & Valenzuela, Loreto & Zarza, Eduardo & Kasbadji-Merzouk, Nachida, 2018. "Influence of the displacement of solar receiver tubes on the performance of a parabolic-trough collector," Energy, Elsevier, vol. 159(C), pages 472-481.
    9. Sandeep, H.M. & Arunachala, U.C., 2017. "Solar parabolic trough collectors: A review on heat transfer augmentation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1218-1231.
    10. He, Y.L. & Cheng, Z.D. & Cui, F.Q. & Li, Z.Y. & Li, D., 2012. "Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling," Renewable Energy, Elsevier, vol. 44(C), pages 368-379.
    11. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    12. Wang, Qing-Hui & Yang, Song & Zhou, Wei & Li, Jing-Rong & Xu, Zhi-Jia & Ke, Yu-Zhi & Yu, Wei & Hu, Guang-Hua, 2018. "Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution," Applied Energy, Elsevier, vol. 216(C), pages 243-261.
    13. Ma, Zhao & Yang, Wei-Wei & Li, Ming-Jia & He, Ya-Ling, 2018. "High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions," Applied Energy, Elsevier, vol. 230(C), pages 769-783.
    14. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    15. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    16. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    17. Cheng, Ze-Dong & He, Ya-Ling & Du, Bao-Cun & Wang, Kun & Liang, Qi, 2015. "Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 148(C), pages 282-293.
    18. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    19. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    20. Liu, Qibin & Hong, Hui & Yuan, Jianli & Jin, Hongguang & Cai, Ruixian, 2009. "Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy," Applied Energy, Elsevier, vol. 86(2), pages 155-162, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezapour, Mojtaba & Gholizadeh, Mohammad, 2021. "Analysis of methanol thermochemical reactor with volumetric solar heat flux based on Parabolic Trough Concentrator," Renewable Energy, Elsevier, vol. 180(C), pages 1088-1100.
    2. Khanmohammadi, Shoaib & Kizilkan, Onder & Ahmed, Faraedoon Waly, 2020. "Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 156(C), pages 1348-1360.
    3. Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
    4. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).
    6. Tang, X.Y. & Yang, W.W. & Yang, Y. & Jiao, Y.H. & Zhang, T., 2021. "A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution," Energy, Elsevier, vol. 229(C).
    7. Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
    2. Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).
    3. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    4. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    5. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    6. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    7. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    8. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
    9. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    10. Zheng, Zhang-Jing & Li, Ming-Jia & He, Ya-Ling, 2017. "Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 1152-1161.
    11. Cheng, Ze-Dong & He, Ya-Ling & Du, Bao-Cun & Wang, Kun & Liang, Qi, 2015. "Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 148(C), pages 282-293.
    12. Fan, Man & You, Shijun & Xia, Junbao & Zheng, Wandong & Zhang, Huan & Liang, Hongbo & Li, Xianli & Li, Bojia, 2018. "An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors," Applied Energy, Elsevier, vol. 225(C), pages 769-781.
    13. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    14. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    15. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    16. Liang, Hongbo & Fan, Man & You, Shijun & Zheng, Wandong & Zhang, Huan & Ye, Tianzhen & Zheng, Xuejing, 2017. "A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 201(C), pages 60-68.
    17. Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
    18. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    19. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    20. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1766-1781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.