System design and thermo-economic analysis of a novel gas turbine combined cycle co-driven by methanol and solar energy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.125030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bai, Zhang & Liu, Qibin & Lei, Jing & Jin, Hongguang, 2018. "Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition," Applied Energy, Elsevier, vol. 217(C), pages 56-65.
- Cheng, Ze-Dong & Men, Jing-Jing & He, Ya-Ling & Tao, Yu-Bing & Ma, Zhao, 2019. "Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production," Renewable Energy, Elsevier, vol. 143(C), pages 1766-1781.
- Wu, Zhicong & Xu, Gang & Ge, Shiyu & Yang, Zhenjun & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with integration of mid-temperature energy upgradation and CO2 recovery: Thermodynamic and economic analysis," Applied Energy, Elsevier, vol. 358(C).
- Wright, S.E., 2004. "Comparison of the theoretical performance potential of fuel cells and heat engines," Renewable Energy, Elsevier, vol. 29(2), pages 179-195.
- Mu, Ruiqi & Liu, Ming & Zhang, Peiye & Yan, Junjie, 2023. "System design and thermo-economic analysis of a new coal power generation system based on supercritical water gasification with full CO2 capture," Energy, Elsevier, vol. 285(C).
- Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
- He, Xin & Li, ChengChen & Wang, Huanran, 2022. "Thermodynamics analysis of a combined cooling, heating and power system integrating compressed air energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 260(C).
- Zhu, Yizi & He, Zhixia & Xuan, Tiemin & Shao, Zhuang, 2024. "An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines," Applied Energy, Elsevier, vol. 362(C).
- Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.
- Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
- Jin, Hongguang & Hong, Hui & Cai, Ruixian, 2006. "A chemically intercooled gas turbine cycle for recovery of low-temperature thermal energy," Energy, Elsevier, vol. 31(10), pages 1554-1566.
- Liu, Taixiu & Bai, Zhang & Zheng, Zhimei & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2019. "100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
- Lee, Beomhui & Im, Seong-kyun, 2024. "Energy, exergy, and exergoeconomic analyses of plastic waste-to-energy integrated gasification combined cycles with and without heat recovery at a gasifier," Applied Energy, Elsevier, vol. 355(C).
- Chi, Xuncheng & Chen, Fengxiang & Mo, Tiande & Li, Yu & Wei, Wei, 2024. "Improve methanol efficiency for direct methanol fuel cell system via investigation and control of optimal operating methanol concentration," Energy, Elsevier, vol. 290(C).
- Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
- Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
- Wu, Zhicong & Xu, Gang & Ge, Shiyu & Liang, Shixing & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with mid-temperature energy upgradation: Thermodynamic and economic analysis," Energy, Elsevier, vol. 288(C).
- He, Xin & Wang, Huanran & Li, Ruixiong & Sun, Hao & Chen, Hao & Li, ChengChen & Ge, Gangqiang & Tao, Feiyue, 2022. "Thermo-conversion of a physical energy storage system with high-energy density: Combination of thermal energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 239(PE).
- Maqbool, Wahab & Kwon, Yuree & Im, Mintaek & An, Jinjoo, 2024. "Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment," Energy, Elsevier, vol. 301(C).
- Liu, Xiufeng & Hong, Hui & Jin, Hongguang, 2017. "Mid-temperature solar fuel process combining dual thermochemical reactions for effectively utilizing wider solar irradiance," Applied Energy, Elsevier, vol. 185(P2), pages 1031-1039.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qun Ge & Xiaoman Cao & Fumin Guo & Jianpeng Li & Cheng Wang & Gang Wang, 2025. "Energy, Exergic and Economic Analyses of a Novel Hybrid Solar–Gas System for Producing Electrical Power and Cooling," Energies, MDPI, vol. 18(10), pages 1-18, May.
- Xiangyang, Wang & Huili, Dou & Liang, Zhang & Tong, Wu & Shuzhe, Ma & Xiaoping, Li & Fangxi, Xie, 2025. "Influence of dissociated methanol gas direct injection pressure on the performance of methanol port injection engine," Energy, Elsevier, vol. 320(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.
- Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
- Zeng, Jia & Xuan, Yimin & Li, Qiang, 2023. "Direct solar-thermal scalable-decomposition of methanol flowing through a nanoparticle-packed bed reactor under outdoor environment," Energy, Elsevier, vol. 280(C).
- Rodriguez-Pastor, D.A. & Garcia-Guzman, A. & Marqués-Valderrama, I. & Ortiz, C. & Carvajal, E. & Becerra, J.A. & Soltero, V.M. & Chacartegui, R., 2024. "A flexible methanol-to-methane thermochemical energy storage system (TCES) for gas turbine (GT) power production," Applied Energy, Elsevier, vol. 356(C).
- Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Wu, Zhicong & Xu, Gang & Huang, Ziqi & Ge, Shiyu & Chen, Heng, 2024. "An efficient carbon-neutral power and methanol polygeneration system based on biomass decarbonization and CO2 hydrogenation: Thermodynamic and economic analysis," Energy, Elsevier, vol. 311(C).
- Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
- Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
- Han, Xiaoqu & Dai, Yanbing & Guo, Xuanhua & Braimakis, Konstantinos & Karellas, Sotirios & Yan, Junjie, 2024. "A novel dual-stage intercooled and recuperative gas turbine system integrated with transcritical organic Rankine cycle: System modeling, energy and exergy analyses," Energy, Elsevier, vol. 305(C).
- Zhang, Yufei & Li, Ruixiong & Shao, Huaishuang & He, Xin & Zhang, Wenlong & Du, Junyu & Song, Yaoguang & Wang, Huanran, 2024. "Thermodynamic and economic analysis of a novel thermoelectric-hydrogen co-generation system combining compressed air energy storage and chemical energy," Energy, Elsevier, vol. 286(C).
- Fang, Juan & Wu, Handong & Liu, Taixiu & Zheng, Zhimei & Lei, Jing & Liu, Qibin & Jin, Hongguang, 2020. "Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization," Applied Energy, Elsevier, vol. 279(C).
- Fang, Juan & Liu, Qibin & Guo, Shaopeng & Lei, Jing & Jin, Hongguang, 2019. "Spanning solar spectrum: A combined photochemical and thermochemical process for solar energy storage," Applied Energy, Elsevier, vol. 247(C), pages 116-126.
- Wu, Zhicong & Xu, Gang & Ge, Shiyu & Liang, Shixing & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with mid-temperature energy upgradation: Thermodynamic and economic analysis," Energy, Elsevier, vol. 288(C).
- Xing, Xueli & Xin, Yu & Sun, Fan & Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2021. "Test of a spectral splitting prototype hybridizing photovoltaic and solar syngas power generation," Applied Energy, Elsevier, vol. 304(C).
- Rezapour, Mojtaba & Gholizadeh, Mohammad, 2021. "Analysis of methanol thermochemical reactor with volumetric solar heat flux based on Parabolic Trough Concentrator," Renewable Energy, Elsevier, vol. 180(C), pages 1088-1100.
- Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
- Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
- Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
- Zhao, Ning & Wang, Jiangjiang & Yang, Jinyu & Yuan, Fuchun, 2024. "Comprehensive evaluation and optimization strategy of solar-driven methanol steam reforming for hydrogen production," Renewable Energy, Elsevier, vol. 232(C).
More about this item
Keywords
Solar energy; Methanol utilization; Gas turbine combined cycle; Thermo-economic; Solar-to-electric efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024140. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.