IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923016070.html
   My bibliography  Save this article

Energy, exergy, and exergoeconomic analyses of plastic waste-to-energy integrated gasification combined cycles with and without heat recovery at a gasifier

Author

Listed:
  • Lee, Beomhui
  • Im, Seong-kyun

Abstract

Energy, exergy, and exergoeconomic analyses were performed for two plastic-integrated gasification combined cycle (plastic-IGCC) systems to evaluate the performance of the plastic waste-to-energy cycles. Plastic waste-to-energy is a promising plastic treatment method that can resolve both plastic waste and environmental issues. Thus, improving the efficiency and economy of plastic-IGCC has become crucial because energy is generated during plastic waste-to-energy treatment while treating waste. The difference between the two modeled cycles is the location of heat recovery from the high-temperature syngas. In Cases 1 and 2, heat from the syngas was recovered with a heat recovery steam generator and a gas heater, respectively, to increase the temperature of the air entering the gasifier. The maximum net efficiency for Case 2 increased by 8.2% (from 35.41% to 43.57%), unlike that of Case 1, without changing exergy destruction. To assess the economic value and market potential, the unit electricity cost was examined for the condition in which the highest efficiency was obtained. The unit exergoeconomic costs for Cases 1 and 2 were 0.141 and 0.108 $/kWh, respectively, which were within the range of those in other energy recovery combined cycles; in addition, using air heaters for heat recovery reduced costs. The use of the air heater for heat recovery benefited energy and economic aspects without significantly changing exergy destruction. These findings have important implications for understanding the impact of gasifier agent conditions and energy recovery methods on the optimum conditions for plastic-IGCC. This study aimed to provide insights into the optimal design and operation of plastic-IGCC systems, considering both energy and economic aspects.

Suggested Citation

  • Lee, Beomhui & Im, Seong-kyun, 2024. "Energy, exergy, and exergoeconomic analyses of plastic waste-to-energy integrated gasification combined cycles with and without heat recovery at a gasifier," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016070
    DOI: 10.1016/j.apenergy.2023.122243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    2. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    3. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    4. Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
    5. Bellomare, Filippo & Rokni, Masoud, 2013. "Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine," Renewable Energy, Elsevier, vol. 55(C), pages 490-500.
    6. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milon Selvam Dennison & Sathish Kumar Paramasivam & Titus Wanazusi & Kirubanidhi Jebabalan Sundarrajan & Bubu Pius Erheyovwe & Abisha Meji Marshal Williams, 2025. "Addressing Plastic Waste Challenges in Africa: The Potential of Pyrolysis for Waste-to-Energy Conversion," Clean Technol., MDPI, vol. 7(1), pages 1-41, March.
    2. Zhang, Peiye & Liu, Ming & Hu, Wenting & Chong, Daotong & Yan, Junjie, 2025. "System design and thermo-economic analysis of a novel gas turbine combined cycle co-driven by methanol and solar energy," Applied Energy, Elsevier, vol. 380(C).
    3. Sun, Jianlong & Bai, Bin & Yu, Xinyue & Wang, Yujie & Zhou, Weihong & Jin, Hui, 2024. "Thermodynamic analysis of a solar-assisted supercritical water gasification system for poly-generation of hydrogen-heat-power production from waste plastics," Energy, Elsevier, vol. 307(C).
    4. Zhao, Ruixin & Liu, Shanjian & Li, Zhihe & Liu, Yinjiao & Li, Ning & Xu, Pan, 2024. "Exergy, exergoeconomic and carbon emission analysis of a novel biomass pyrolysis system with self-heating and torrefaction," Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    2. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    4. Yan, Caozheng & Abed, Azher M. & Singh, Pradeep Kumar & Li, Xuetao & Zhou, Xiao & Lei, Guoliang & Abdullaev, Sherzod & Elmasry, Yasser & Mahariq, Ibrahim, 2024. "Metaheuristic optimizing energy recovery from plastic waste in a gasification-based system for waste conversion and management," Energy, Elsevier, vol. 312(C).
    5. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    6. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    7. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2018. "Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems," Applied Energy, Elsevier, vol. 220(C), pages 944-961.
    8. Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.
    9. Wang, Heng & Zhao, Hongbin & Du, Huicheng & Zhao, Zefeng & Zhang, Taiheng, 2022. "Thermodynamic performance study of a new diesel-fueled CLHG/SOFC/STIG cogeneration system with CO2 recovery," Energy, Elsevier, vol. 246(C).
    10. Baldinelli, Arianna & Barelli, Linda & Bidini, Gianni, 2015. "Performance characterization and modelling of syngas-fed SOFCs (solid oxide fuel cells) varying fuel composition," Energy, Elsevier, vol. 90(P2), pages 2070-2084.
    11. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    12. Casas Ledón, Yannay & Arteaga-Perez, Luis E. & Toledo, Juan & Dewulf, Jo, 2015. "Exergoeconomic evaluation of an ethanol-fueled solid oxide fuel cell power plant," Energy, Elsevier, vol. 93(P2), pages 1287-1295.
    13. Vialetto, Giulio & Rokni, Masoud, 2015. "Innovative household systems based on solid oxide fuel cells for a northern European climate," Renewable Energy, Elsevier, vol. 78(C), pages 146-156.
    14. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    15. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    16. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    17. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    18. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization," Applied Energy, Elsevier, vol. 204(C), pages 1148-1162.
    19. Wang, Dan & Jasim, Dheyaa J. & Zoghi, Mohammad & Habibi, Hamed, 2024. "Optimized multi-criteria performance of a poly-generation layout including a Stirling engine and a supercritical Brayton cycle using biogas and methane as two potential fuels of a topping gas turbine ," Energy, Elsevier, vol. 310(C).
    20. Liang, Wenxing & Yu, Zeting & Liu, Wenjing & Ji, Shaobo, 2023. "Investigation of a novel near-zero emission poly-generation system based on biomass gasification and SOFC: A thermodynamic and exergoeconomic evaluation," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.