IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024921.html
   My bibliography  Save this article

Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine

Author

Listed:
  • Tang, Yuanyou
  • Wang, Yang
  • Long, Wuqiang
  • Xiao, Ge
  • Wang, Yongjian
  • Li, Weixing

Abstract

Utilizing engine exhaust to provide energy for methanol steam reforming is a dependable approach for waste heat recovery and online hydrogen production. In this work, firstly, an online methanol reformer system based on waste heat recovery from a methanol-diesel dual direct injection engine is proposed, and a novel methanol reformer adapted to the engine is designed. Then, simulation models of the methanol reformer are developed, and a multi-physics coupled simulation is performed. The component transport model with three-step simplified reactions is used to simulate the methanol steam reforming, and the influence mechanism of key operational parameters on reforming performance is deeply revealed through quantitative and qualitative analyses. Furthermore, the dynamic evolution of gas components inside the methanol reformer under different operational parameters is disclosed through the visualization of simulation results. Finally, sensitivity analysis of key operational parameters is conducted through orthogonal experiment, and the quantification and ranking of the sensitivity is realized by using the range analysis method. The results indicate that, relative to the initial conditions, the hydrogen production rate and methanol conversion are improved by 60.35% and 27.28%, respectively. The findings of this study provide a valuable reference for designing and enhancing the performance of methanol reformer.

Suggested Citation

  • Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024921
    DOI: 10.1016/j.energy.2023.129098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.