IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v29y2014icp355-368.html
   My bibliography  Save this article

Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review

Author

Listed:
  • Iulianelli, A.
  • Ribeirinha, P.
  • Mendes, A.
  • Basile, A.

Abstract

In the recent years, hydrogen has gained a considerable interest as an energy carrier useful for various applications and, particularly, for polymer electrolyte membrane fuel cells (PEMFCs) supply. Nevertheless, PEMFCs require high purity hydrogen as a feeding fuel, which shows some limitations regarding storage and transportation. Therefore, to overcome these problems, the in situ hydrogen generation has made attractive both alcohols and hydrocarbons steam reforming reaction. Among other fuels, methanol is an interesting hydrogen source because it is liquid at ambient conditions, possesses relatively high H/C ratio, low reforming temperature (200–300°C) and it is also producible from biomass. Meanwhile, there is a comprehensive literature about inorganic membrane reactors utilization for hydrogen generation via methanol steam reforming reaction. This review illustrates the earlier state of the art from an experimental point of view about hydrogen production from methanol reforming performed in both conventional and membrane reactors. Furthermore, a short overview about methanol reforming catalysts as well as a discussion on the impact of methanol steam reforming process via inorganic membrane reactors to produce hydrogen for PEMFCs supply is given.

Suggested Citation

  • Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.
  • Handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:355-368
    DOI: 10.1016/j.rser.2013.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113005728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouzounidou, Martha & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2009. "A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies," Energy, Elsevier, vol. 34(10), pages 1733-1743.
    2. Hsueh, Ching-Yi & Chu, Hsin-Sen & Yan, Wei-Mon & Chen, Chiun-Hsun, 2010. "Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design," Applied Energy, Elsevier, vol. 87(10), pages 3137-3147, October.
    3. Xiu, Shuangning & Shahbazi, Abolghasem, 2012. "Bio-oil production and upgrading research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4406-4414.
    4. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    5. Edward K. Y. Chen, 1983. "The Diffusion of Technology," Palgrave Macmillan Books, in: Multinational Corporations, Technology and Employment, chapter 4, pages 69-93, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    2. repec:ilo:ilowps:286250 is not listed on IDEAS
    3. Coria, Jessica & Villegas-Palacio, Clara, 2010. "Targeted Enforcement and Aggregate Emissions With Uniform Emission Taxes," Working Papers in Economics 455, University of Gothenburg, Department of Economics.
    4. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    5. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    6. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    7. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    8. Fagerberg, Jan, 1987. "A technology gap approach to why growth rates differ," Research Policy, Elsevier, vol. 16(2-4), pages 87-99, August.
    9. Zhao, Kai & Tian, Zhenyu & Zhang, Jinrui & Lu, Buchu & Hao, Yong, 2023. "Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation," Applied Energy, Elsevier, vol. 330(PB).
    10. Nigel Meade & Towhidul Islam, 1998. "Technological Forecasting---Model Selection, Model Stability, and Combining Models," Management Science, INFORMS, vol. 44(8), pages 1115-1130, August.
    11. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    12. Tetsuji Okazaki, 2021. "The Impact of Technological Change on Labor and Wage: The Japanese Silk Weaving Industry during the Industrial Revolution," CIGS Working Paper Series 21-002E, The Canon Institute for Global Studies.
    13. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    14. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    15. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    16. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    17. Yuan, Zhenyu & Zhang, Yufeng & Fu, Wenting & Li, Zipeng & Liu, Xiaowei, 2013. "Investigation of a small-volume direct methanol fuel cell stack for portable applications," Energy, Elsevier, vol. 51(C), pages 462-467.
    18. Rebecca Schewe & Diana Stuart, 2015. "Diversity in agricultural technology adoption: How are automatic milking systems used and to what end?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 199-213, June.
    19. Franklin M. Lartey, 2020. "Predicting Product Uptake Using Bass, Gompertz, and Logistic Diffusion Models: Application to a Broadband Product," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 9(2), pages 1-5, October.
    20. Thakur, Ramendra & Hsu, Sonya H.Y. & Fontenot, Gwen, 2012. "Innovation in healthcare: Issues and future trends," Journal of Business Research, Elsevier, vol. 65(4), pages 562-569.
    21. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:355-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.