IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223016973.html
   My bibliography  Save this article

Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations

Author

Listed:
  • Qiu, Guoyi
  • Zhu, Shaolong
  • Wang, Kai
  • Wang, Weibo
  • Hu, Junhui
  • Hu, Yun
  • Zhi, Xiaoqin
  • Qiu, Limin

Abstract

Reciprocating liquid hydrogen pump operates under alternating pressure, temperature, and flowrate with dramatic changes in the thermodynamic states of liquid hydrogen. The thermodynamic state in the pump is influenced by the dynamic interactions between fluid flow, heat transfer, piston motion, and valve dynamics. This paper presents a numerical study for reciprocating liquid hydrogen pumps based on a coupled simulation of the dynamic processes between the alternating flow, unsteady heat transfer, and valve dynamics with a given piston motion as the input. A pump for hydrogen refueling stations with a nominal flowrate and delivery pressure of 50 kg/h and 87.6 MPa is selected as the research object. The appropriate design parameters of the pump and its valves are determined to avoid cavitation in the cylinder and oscillation of the valves. The effects of the frequency and delivery pressure on the valve motion and pump performance are further analyzed. Finally, the in-cylinder heat transfer leads to an extra evaporation loss of 0.012 kg/day, and the isentropic and volumetric efficiencies of the liquid hydrogen pump are 97.30% and 90.76% respectively. The work presented here would be beneficial for the design and optimization of reciprocating liquid hydrogen pumps.

Suggested Citation

  • Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016973
    DOI: 10.1016/j.energy.2023.128303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223016973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jingxuan & Lin, Wensheng, 2021. "Integrated hydrogen liquefaction processes with LNG production by two-stage helium reverse Brayton cycles taking industrial by-products as feedstock gas," Energy, Elsevier, vol. 227(C).
    2. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wang, Danfeng & Wu, Qing, 2021. "Optimal design and techno-economic assessment of low-carbon hydrogen supply pathways for a refueling station located in Shanghai," Energy, Elsevier, vol. 237(C).
    3. Teng, Junjie & Wang, Kai & Zhu, Shaolong & Bao, Shiran & Zhi, Xiaoqin & Zhang, Xiaobin & Qiu, Limin, 2023. "Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods," Energy, Elsevier, vol. 271(C).
    4. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    5. Li, Kaiyu & Gao, Yitong & Zhang, Shengan & Liu, Guilian, 2022. "Study on the energy efficiency of bioethanol-based liquid hydrogen production process," Energy, Elsevier, vol. 238(PC).
    6. Nanbin Qiu & Xianwei Shang & Ruimin Liu & Ping Jin & Wanli Gao, 2022. "Analysis of the Dynamic Characteristics of the Pump Valve System of an Ultra-High Pressure Liquid Hydrogen Reciprocating Pump," Energies, MDPI, vol. 15(12), pages 1-21, June.
    7. Dai, Huaming & Song, Ziwei & Wang, Hongting & Cui, Qingyuan, 2023. "Efficient production of hydrogen by catalytic decomposition of methane with Fe-substituted hexaaluminate coated packed bed," Energy, Elsevier, vol. 273(C).
    8. Yan, Yan & Xu, Zhan & Han, Feng & Wang, Zhao & Ni, Zhonghua, 2022. "Energy control of providing cryo-compressed hydrogen for the heavy-duty trucks driving," Energy, Elsevier, vol. 242(C).
    9. Bi, Yujing & Ju, Yonglin, 2022. "Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization," Energy, Elsevier, vol. 252(C).
    10. Guorong Wang & Lin Zhong & Xia He & Zhongqing Lei & Gang Hu & Rong Li & Yunhai Wang, 2015. "Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    11. Rutczyk, Bartlomiej & Szczygieł, Ireneusz, 2021. "Development of internal heat transfer correlations for the cylinders of reciprocating machines," Energy, Elsevier, vol. 230(C).
    12. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Jiang, Wenyin & Liu, Can & Sun, Zhigang, 2023. "Promoting developments of hydrogen production from renewable energy and hydrogen energy vehicles in China analyzing a public-private partnership cooperation scheme based on evolutionary game theory," Energy, Elsevier, vol. 278(PB).
    14. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2020. "Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China," Energy, Elsevier, vol. 209(C).
    15. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    16. Garcia G., Matias & Oliva H., Sebastian, 2023. "Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile," Energy, Elsevier, vol. 278(PB).
    17. Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
    2. Teng, Junjie & Wang, Kai & Zhu, Shaolong & Bao, Shiran & Zhi, Xiaoqin & Zhang, Xiaobin & Qiu, Limin, 2023. "Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods," Energy, Elsevier, vol. 271(C).
    3. Shu, Zhiyong & Liang, Wenqing & Zheng, Xiaohong & Lei, Gang & Cao, Peng & Dai, Wenxiao & Qian, Hua, 2021. "Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment," Energy, Elsevier, vol. 236(C).
    4. Kannaiyan, Kumaran & Lekshmi, G.S. & Ramakrishna, Seeram & Kang, Misook & Kumaravel, Vignesh, 2023. "Perspectives for the green hydrogen energy-based economy," Energy, Elsevier, vol. 284(C).
    5. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    6. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    7. Chiu, Wei-Cheng & Hou, Shuhn-Shyurng & Chen, Chen-Yu & Lai, Wei-Hsiang & Horng, Rong-Fang, 2022. "Hydrogen-rich gas with low-level CO produced with autothermal methanol reforming providing a real-time supply used to drive a kW-scale PEMFC system," Energy, Elsevier, vol. 239(PC).
    8. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    9. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    10. Xue, Renjun & Tan, Jun & Zhao, Bangjian & Zhao, Yongjiang & Tan, Han & Wu, Shiguang & Zhai, Yujia & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor," Energy, Elsevier, vol. 278(PB).
    11. Akito Ozawa & Yuki Kudoh, 2021. "Assessing Uncertainties of Life-Cycle CO 2 Emissions Using Hydrogen Energy for Power Generation," Energies, MDPI, vol. 14(21), pages 1-23, October.
    12. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    13. Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
    14. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    16. Bai, Xiao-Shuai & Rong, Long & Yang, Wei-Wei & Yang, Fu-Sheng, 2023. "Effective thermal conductivity of metal hydride particle bed: Theoretical model and experimental validation," Energy, Elsevier, vol. 271(C).
    17. Xizi Cao & Ye Tian & Yan Shen & Tongran Wu & Renfei Li & Xinyu Liu & Amanzheli Yeerken & Yangyang Cui & Yifeng Xue & Aiping Lian, 2021. "Emission Variations of Primary Air Pollutants from Highway Vehicles and Implications during the COVID-19 Pandemic in Beijing, China," IJERPH, MDPI, vol. 18(8), pages 1-12, April.
    18. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    19. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    20. Guwen Tang & Meng Zhang & Fei Bu, 2023. "Vehicle Environmental Efficiency Evaluation in Different Regions in China: A Combination of the Life Cycle Analysis (LCA) and Two-Stage Data Envelopment Analysis (DEA) Methods," Sustainability, MDPI, vol. 15(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.