Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Jingxuan & Lin, Wensheng, 2021. "Integrated hydrogen liquefaction processes with LNG production by two-stage helium reverse Brayton cycles taking industrial by-products as feedstock gas," Energy, Elsevier, vol. 227(C).
- Bi, Yujing & Ju, Yonglin, 2022. "Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization," Energy, Elsevier, vol. 252(C).
- Liu, Zhongxuan & Kim, Donghoi & Gundersen, Truls, 2022. "Optimal recovery of thermal energy in liquid air energy storage," Energy, Elsevier, vol. 240(C).
- Yang, Jae-Hyeon & Yoon, Younggak & Ryu, Mincheol & An, Su-Kyung & Shin, Jisup & Lee, Chul-Jin, 2019. "Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system," Applied Energy, Elsevier, vol. 255(C).
- Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
- Wang, Zhe & Li, Yanzhong, 2016. "Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 500-514.
- Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
- Meng, Yue & Wu, Haoyue & Zheng, Yuhang & Wang, Kunpeng & Duan, Yinying, 2022. "Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy," Energy, Elsevier, vol. 253(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Kaimiao & Zhao, Kang & Chen, Liang & Zhang, Ze & Deng, Kunyu & Chen, Shuangtao & Hou, Yu, 2024. "High-efficiency control strategies of a hydrogen turbo-expander for a 5 t/d hydrogen liquefier," Energy, Elsevier, vol. 297(C).
- Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
- Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
- Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
- Yang, Jian & Li, Yanzhong & Li, Cui & Tan, Hongbo, 2024. "Hydrogen pressure-based comparative and applicability analysis of different innovative Claude cycles for large-scale hydrogen liquefaction," Energy, Elsevier, vol. 305(C).
- Im, Junyoung & Gye, Hye-Ri & Wilailak, Supaporn & Yoon, Ha-Jun & Kim, Yongsoo & Kim, Hyungchan & Lee, Chul-Jin, 2024. "Hydrogen liquefaction process using carbon dioxide as a pre-coolant for carbon capture and utilization," Energy, Elsevier, vol. 307(C).
- Qiao, Yan & Jiang, Wenquan & Li, Yang & Dong, Xiaoxiao & Yang, Fan, 2024. "Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy," Energy, Elsevier, vol. 302(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bi, Yujing & Ju, Yonglin, 2022. "Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization," Energy, Elsevier, vol. 252(C).
- Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
- Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
- Qiao, Yan & Jiang, Wenquan & Li, Yang & Dong, Xiaoxiao & Yang, Fan, 2024. "Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy," Energy, Elsevier, vol. 302(C).
- Xu, Jingxuan & Song, Zekai & Chen, Xi & Yang, Qiguo, 2024. "Design and optimization of high-density cryogenic supercritical hydrogen storage systems integrating with dual mixed refrigerant cycles," Energy, Elsevier, vol. 290(C).
- Li, Kaiyu & Gao, Yitong & Zhang, Shengan & Liu, Guilian, 2022. "Study on the energy efficiency of bioethanol-based liquid hydrogen production process," Energy, Elsevier, vol. 238(PC).
- Fengyuan Yan & Jinliang Geng & Guangxin Rong & Heng Sun & Lei Zhang & Jinxu Li, 2023. "Optimization and Analysis of an Integrated Liquefaction Process for Hydrogen and Natural Gas Utilizing Mixed Refrigerant Pre-Cooling," Energies, MDPI, vol. 16(10), pages 1-18, May.
- Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
- Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
- Faramarzi, Saman & Gharanli, Sajjad & Ramazanzade Mohammadi, Mohsen & Rahimtabar, Amin & J. Chamkha, Ali, 2023. "Energy, exergy, and economic analysis of an innovative hydrogen liquefaction cycle integrated into an absorption refrigeration system and geothermal energy," Energy, Elsevier, vol. 282(C).
- Im, Junyoung & Gye, Hye-Ri & Wilailak, Supaporn & Yoon, Ha-Jun & Kim, Yongsoo & Kim, Hyungchan & Lee, Chul-Jin, 2024. "Hydrogen liquefaction process using carbon dioxide as a pre-coolant for carbon capture and utilization," Energy, Elsevier, vol. 307(C).
- Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
- Geng, Jinliang & Sun, Heng, 2023. "Optimization and analysis of a hydrogen liquefaction process: Energy, exergy, economic, and uncertainty quantification analysis," Energy, Elsevier, vol. 262(PA).
- Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).
- Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
- Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
- d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
- Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
- Muhsin Kılıç & Ayse Fidan Altun, 2023. "Comprehensive Thermodynamic Performance Evaluation of Various Gas Liquefaction Cycles for Cryogenic Energy Storage," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
- Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
More about this item
Keywords
Ortho-para hydrogen; Hydrogen liquefaction; Liquid hydrogen; Continuous conversion; Hydrogen liquefier; Exergy analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.