IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004103.html
   My bibliography  Save this article

Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods

Author

Listed:
  • Teng, Junjie
  • Wang, Kai
  • Zhu, Shaolong
  • Bao, Shiran
  • Zhi, Xiaoqin
  • Zhang, Xiaobin
  • Qiu, Limin

Abstract

Catalytic conversion of ortho-para hydrogen is essential for hydrogen liquefaction. Among the three ortho-para hydrogen conversion methods, i.e., isothermal, adiabatic and continuous conversion, it has already been accepted that the continuous conversion is the most energy-efficient. However, studies on quantitative analyses and the underling mechanisms are still lacking. In this paper, the three conversion methods are evaluated based on a reference 5 t/d-scale hydrogen liquefaction process with a self-developed numerical model. Optimizations are conducted to identify the lowest specific energy consumption (SEC) of the hydrogen liquefaction process with different conversion methods. The three conversion methods are compared in terms of the temperature distribution along the process, the conversion-heat-associated exergy and SEC. The optimization results show that the continuous-conversion based process reaches the lowest SEC, i.e., 11.38 kWh/kgLH2, which is 21.8% and 28.7% lower than the adiabatic and isothermal ones. Exergy analyses indicate that the exergy consumption associated with dissipating the conversion heat is the lowest for the continuous conversion (139.54 kW), followed by the adiabatic conversion and then the isothermal conversion, i.e., 174.94 kW and 273.90 kW, respectively. This work demonstrates the differences quantitively and reveals its mechanism thermodynamically, which would be helpful for understanding, and designing hydrogen liquefaction processes.

Suggested Citation

  • Teng, Junjie & Wang, Kai & Zhu, Shaolong & Bao, Shiran & Zhi, Xiaoqin & Zhang, Xiaobin & Qiu, Limin, 2023. "Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004103
    DOI: 10.1016/j.energy.2023.127016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jingxuan & Lin, Wensheng, 2021. "Integrated hydrogen liquefaction processes with LNG production by two-stage helium reverse Brayton cycles taking industrial by-products as feedstock gas," Energy, Elsevier, vol. 227(C).
    2. Bi, Yujing & Ju, Yonglin, 2022. "Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization," Energy, Elsevier, vol. 252(C).
    3. Liu, Zhongxuan & Kim, Donghoi & Gundersen, Truls, 2022. "Optimal recovery of thermal energy in liquid air energy storage," Energy, Elsevier, vol. 240(C).
    4. Wang, Zhe & Li, Yanzhong, 2016. "Layer pattern thermal design and optimization for multistream plate-fin heat exchangers—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 500-514.
    5. Yang, Jae-Hyeon & Yoon, Younggak & Ryu, Mincheol & An, Su-Kyung & Shin, Jisup & Lee, Chul-Jin, 2019. "Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system," Applied Energy, Elsevier, vol. 255(C).
    6. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
    7. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    8. Meng, Yue & Wu, Haoyue & Zheng, Yuhang & Wang, Kunpeng & Duan, Yinying, 2022. "Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy," Energy, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Kaimiao & Zhao, Kang & Chen, Liang & Zhang, Ze & Deng, Kunyu & Chen, Shuangtao & Hou, Yu, 2024. "High-efficiency control strategies of a hydrogen turbo-expander for a 5 t/d hydrogen liquefier," Energy, Elsevier, vol. 297(C).
    2. Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
    3. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi, Yujing & Ju, Yonglin, 2022. "Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization," Energy, Elsevier, vol. 252(C).
    2. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
    3. Fengyuan Yan & Jinliang Geng & Guangxin Rong & Heng Sun & Lei Zhang & Jinxu Li, 2023. "Optimization and Analysis of an Integrated Liquefaction Process for Hydrogen and Natural Gas Utilizing Mixed Refrigerant Pre-Cooling," Energies, MDPI, vol. 16(10), pages 1-18, May.
    4. Xu, Jingxuan & Song, Zekai & Chen, Xi & Yang, Qiguo, 2024. "Design and optimization of high-density cryogenic supercritical hydrogen storage systems integrating with dual mixed refrigerant cycles," Energy, Elsevier, vol. 290(C).
    5. Li, Kaiyu & Gao, Yitong & Zhang, Shengan & Liu, Guilian, 2022. "Study on the energy efficiency of bioethanol-based liquid hydrogen production process," Energy, Elsevier, vol. 238(PC).
    6. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    7. Faramarzi, Saman & Gharanli, Sajjad & Ramazanzade Mohammadi, Mohsen & Rahimtabar, Amin & J. Chamkha, Ali, 2023. "Energy, exergy, and economic analysis of an innovative hydrogen liquefaction cycle integrated into an absorption refrigeration system and geothermal energy," Energy, Elsevier, vol. 282(C).
    8. Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
    9. Geng, Jinliang & Sun, Heng, 2023. "Optimization and analysis of a hydrogen liquefaction process: Energy, exergy, economic, and uncertainty quantification analysis," Energy, Elsevier, vol. 262(PA).
    10. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    11. Riaz, Amjad & Qyyum, Muhammad Abdul & Min, Seongwoong & Lee, Sanggyu & Lee, Moonyong, 2021. "Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: Energy and exergy perspectives," Applied Energy, Elsevier, vol. 301(C).
    12. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    13. Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
    14. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    15. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    16. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    17. Kheshti, Mostafa & Zhao, Xiaowei & Liang, Ting & Nie, Binjian & Ding, Yulong & Greaves, Deborah, 2022. "Liquid air energy storage for ancillary services in an integrated hybrid renewable system," Renewable Energy, Elsevier, vol. 199(C), pages 298-307.
    18. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    19. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    20. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.