IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032729.html
   My bibliography  Save this article

Integrating solar-powered branched GAX cycle and claude cycle for producing liquid hydrogen: Comprehensive study using real data and optimization

Author

Listed:
  • Yamin, Zhang
  • El-Shafay, A.S.
  • Saraswat, Manish
  • Mahariq, Ibrahim
  • Alhomayani, Fahad Mohammed
  • Rajab, Husam
  • Almojil, Sattam Fahad
  • Almohana, Abdulaziz Ibrahim
  • Sillanpää, Mika

Abstract

The present study introduces a novel hydrogen liquefaction system that integrates a Claude cycle and a branched GAX cycle, marking the first instance of such a combination. Utilizing solar energy improves hydrogen manufacturing efficiency and sustainability. This research uses actual data to estimate the best operating time by examining thermodynamic performance, payback duration, exergoeconomic parameters, environmental effect, and sustainability. A current bi-objective optimization technique maximizes exergy efficiency and minimizes hydrogen liquefaction cost. Evaporator and generator temperatures, solar direct beam irradiation, and cycle's high pressure are key decision variables. The sensitivity analysis highlights the substantial influence of cycle's high pressure on hydrogen liquefaction cost, as indicated by a sensitivity index of 0.486. The research calculates the best solution using TOPSIS decision-making, resulting in 50.22 % exergy efficiency and $1.366/kg hydrogen liquefaction cost. After conducting a thorough case study, it becomes evident that May is the most optimal month for liquid hydrogen production, payback period, and net profit. However, January has a high coefficient of performance and exergy efficiency and low liquid hydrogen production cost. The cheapest capital investment month is July. This complete study of the solar-driven hydrogen liquefaction system uncovers critical parameters and their effects, enabling hydrogen production efficiency and sustainability.

Suggested Citation

  • Yamin, Zhang & El-Shafay, A.S. & Saraswat, Manish & Mahariq, Ibrahim & Alhomayani, Fahad Mohammed & Rajab, Husam & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Sillanpää, Mika, 2024. "Integrating solar-powered branched GAX cycle and claude cycle for producing liquid hydrogen: Comprehensive study using real data and optimization," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032729
    DOI: 10.1016/j.energy.2024.133496
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teng, Junjie & Wang, Kai & Zhu, Shaolong & Bao, Shiran & Zhi, Xiaoqin & Zhang, Xiaobin & Qiu, Limin, 2023. "Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods," Energy, Elsevier, vol. 271(C).
    2. Lee, Jaejun & Son, Heechang & Oh, Juyoung & Yu, Taejong & Kim, Hyeonuk & Lim, Youngsub, 2024. "Advanced process design of subcooling re-liquefaction system considering storage pressure for a liquefied CO2 carrier," Energy, Elsevier, vol. 293(C).
    3. Bi, Yujing & Ju, Yonglin, 2022. "Design and analysis of an efficient hydrogen liquefaction process based on helium reverse Brayton cycle integrating with steam methane reforming and liquefied natural gas cold energy utilization," Energy, Elsevier, vol. 252(C).
    4. Zou, Aihong & Zeng, Yupei & Luo, Ercang, 2023. "New generation hydrogen liquefaction technology by transonic two-phase expander," Energy, Elsevier, vol. 272(C).
    5. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
    6. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
    7. Yilmaz, Ceyhun, 2018. "A case study: Exergoeconomic analysis and genetic algorithm optimization of performance of a hydrogen liquefaction cycle assisted by geothermal absorption precooling cycle," Renewable Energy, Elsevier, vol. 128(PA), pages 68-80.
    8. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2023. "Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle," Energy, Elsevier, vol. 263(PB).
    9. Faramarzi, Saman & Gharanli, Sajjad & Ramazanzade Mohammadi, Mohsen & Rahimtabar, Amin & J. Chamkha, Ali, 2023. "Energy, exergy, and economic analysis of an innovative hydrogen liquefaction cycle integrated into an absorption refrigeration system and geothermal energy," Energy, Elsevier, vol. 282(C).
    10. Geng, Jinliang & Sun, Heng, 2023. "Optimization and analysis of a hydrogen liquefaction process: Energy, exergy, economic, and uncertainty quantification analysis," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bian, Jiang & Zhang, Xingwang & Zhang, Rui & Cai, Weihua & Hua, Yihuai & Cao, Xuewen, 2024. "Conceptual design and analysis of a new hydrogen liquefaction process based on heat pump systems," Applied Energy, Elsevier, vol. 374(C).
    2. Im, Junyoung & Gye, Hye-Ri & Wilailak, Supaporn & Yoon, Ha-Jun & Kim, Yongsoo & Kim, Hyungchan & Lee, Chul-Jin, 2024. "Hydrogen liquefaction process using carbon dioxide as a pre-coolant for carbon capture and utilization," Energy, Elsevier, vol. 307(C).
    3. Qiao, Yan & Jiang, Wenquan & Li, Yang & Dong, Xiaoxiao & Yang, Fan, 2024. "Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy," Energy, Elsevier, vol. 302(C).
    4. Zhou, Kaimiao & Zhao, Kang & Chen, Liang & Zhang, Ze & Deng, Kunyu & Chen, Shuangtao & Hou, Yu, 2024. "High-efficiency control strategies of a hydrogen turbo-expander for a 5 t/d hydrogen liquefier," Energy, Elsevier, vol. 297(C).
    5. Fengyuan Yan & Jinliang Geng & Guangxin Rong & Heng Sun & Lei Zhang & Jinxu Li, 2023. "Optimization and Analysis of an Integrated Liquefaction Process for Hydrogen and Natural Gas Utilizing Mixed Refrigerant Pre-Cooling," Energies, MDPI, vol. 16(10), pages 1-18, May.
    6. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
    7. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    8. Yang, Jian & Li, Yanzhong & Li, Cui & Tan, Hongbo, 2024. "Hydrogen pressure-based comparative and applicability analysis of different innovative Claude cycles for large-scale hydrogen liquefaction," Energy, Elsevier, vol. 305(C).
    9. Xu, Jingxuan & Song, Zekai & Chen, Xi & Yang, Qiguo, 2024. "Design and optimization of high-density cryogenic supercritical hydrogen storage systems integrating with dual mixed refrigerant cycles," Energy, Elsevier, vol. 290(C).
    10. Teng, Junjie & Wang, Kai & Zhu, Shaolong & Bao, Shiran & Zhi, Xiaoqin & Zhang, Xiaobin & Qiu, Limin, 2023. "Comparative study on thermodynamic performance of hydrogen liquefaction processes with various ortho-para hydrogen conversion methods," Energy, Elsevier, vol. 271(C).
    11. Li, Kaiyu & Gao, Yitong & Zhang, Shengan & Liu, Guilian, 2022. "Study on the energy efficiency of bioethanol-based liquid hydrogen production process," Energy, Elsevier, vol. 238(PC).
    12. Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
    13. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    14. Xue, Renjun & Tan, Jun & Zhao, Bangjian & Zhao, Yongjiang & Tan, Han & Wu, Shiguang & Zhai, Yujia & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor," Energy, Elsevier, vol. 278(PB).
    15. Chang, Yue & Jia, Yulong & Hong, Tan, 2023. "Comprehensive analysis and multi-objective optimization of an innovative power generation system using biomass gasification and LNG regasification processes," Energy, Elsevier, vol. 283(C).
    16. Ingeborg Treu Røe & Pauline Oeuvray & Marco Mazzotti & Simon Roussanaly, 2024. "Comparative Assessments of At-Sea and Inland Low- and Medium-Pressure CO 2 Transport," Energies, MDPI, vol. 17(23), pages 1-21, December.
    17. Zhang, Luyao & Wang, Xueke & Abed, Azher M. & Yin, Hengbin & Abdullaev, Sherzod & Fouad, Yasser & Dahari, Mahidzal & Mahariq, Ibrahim, 2024. "Economic/sustainability optimization/analysis of an environmentally friendly trigeneration biomass gasification system using advanced machine learning," Energy, Elsevier, vol. 308(C).
    18. Atienza-Márquez, Antonio & Oi, Shota & Araki, Takuto & Mitsushima, Shigenori, 2024. "Water transport across the membrane of a direct toluene electro-hydrogenation electrolyzer: Experiments and modelling," Energy, Elsevier, vol. 304(C).
    19. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    20. Hajialigol, Najmeh & Fattahi, Abolfazl & Karimi, Nader & Jamali, Mostafa & Keighobadi, Shervin, 2024. "Hybridized power-hydrogen generation using various configurations of Brayton-organic flash Rankine cycles fed by a sustainable fuel: Exergy and exergoeconomic analyses with ANN prediction," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.