IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222024173.html
   My bibliography  Save this article

Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle

Author

Listed:
  • Liu, Xianglong
  • Hu, Guang
  • Zeng, Zhi

Abstract

The current study proposes a novel combination of biomass-based Brayton cycle with dual-loop Organic Flash Cycle, modified Kalina cycle, steam heating load, and Claude hydrogen liquefaction. Some novelties, including digester employment, supplying dual-loop OFC input energy via the Kalina cycle's condenser, supplying cooling demand directly from the Kalina cycle, etc., are taken into account to improve the proposed scheme's performance. Thermodynamic, thermoeconomic, and environmental analyses are utilized to estimate the system's metric performance indexes for the mass flow rate of 1 kg/s of biogas at the base condition, resulting in obtaining 5225 kW net power, 73.34 kW cooling load, and 120.8 ton/kW levelized total emission, and 0.0380 kg/s liquefied hydrogen. Regarding the sensitivity analysis's results, the combustion chamber's exit temperature mainly impacts the system's performance indicators. Also, the optimum state is achieved via three modes in which the exergetic efficiency-liquid hydrogen mass rate mode presents the best levelized total emission of about 118.2 ton/kW, liquid hydrogen mass rate of about 0.0382 kg/s, and a net power of about 5384 kW. In contrast, the exergetic efficiency- Net Present Value mode presents the best economic performance of about 27.79 M$ net present value and 77.84 kW cooling load.

Suggested Citation

  • Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2023. "Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222024173
    DOI: 10.1016/j.energy.2022.125535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    2. Haghghi, Maghsoud Abdollahi & Mohammadi, Zahra & Pesteei, Seyed Mehdi & Chitsaz, Ata & Parham, Kiyan, 2020. "Exergoeconomic evaluation of a system driven by parabolic trough solar collectors for combined cooling, heating, and power generation; a case study," Energy, Elsevier, vol. 192(C).
    3. Rahimi, Mohammad Javad & Ghorbani, Bahram & Amidpour, Majid & Hamedi, Mohammad Hossein, 2021. "Configuration optimization of a multi-generation plant based on biomass gasification," Energy, Elsevier, vol. 227(C).
    4. Ahmadi, Samareh & Ghaebi, Hadi & Shokri, Afshar, 2019. "A comprehensive thermodynamic analysis of a novel CHP system based on SOFC and APC cycles," Energy, Elsevier, vol. 186(C).
    5. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    6. Safder, Usman & Nguyen, Hai-Tra & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Energetic, economic, exergetic, and exergorisk (4E) analyses of a novel multi-generation energy system assisted with bagasse-biomass gasifier and multi-effect desalination unit," Energy, Elsevier, vol. 219(C).
    7. Sun, Faming & Zhou, Weisheng & Ikegami, Yasuyuki & Nakagami, Kenichi & Su, Xuanming, 2014. "Energy–exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11)," Renewable Energy, Elsevier, vol. 66(C), pages 268-279.
    8. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
    9. Meng, Yue & Wu, Haoyue & Zheng, Yuhang & Wang, Kunpeng & Duan, Yinying, 2022. "Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy," Energy, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    2. Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
    3. Bani-Hani, Ehab & El Haj Assad, Mamdouh & Alzara, Majed & Yosri, Ahmed M. & Aryanfar, Yashar & Castellanos, Humberto Garcia & Mohtaram, Soheil & Bouabidi, Abdallah, 2023. "Energy and exergy analyses of a regenerative Brayton cycle utilizing monochlorobiphenyl wastes as an alternative fuel," Energy, Elsevier, vol. 278(PA).
    4. Baby-Jean Robert Mungyeko Bisulandu & Adrian Ilinca & Marcel Tsimba Mboko & Lucien Mbozi Mbozi, 2023. "Thermodynamic Performance of a Cogeneration Plant Driven by Waste Heat from Cement Kilns Exhaust Gases," Energies, MDPI, vol. 16(5), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xianglong & Hu, Guang & Zeng, Zhi, 2022. "Potential of biomass processing using digester in arrangement with a Brayton cycle, a Kalina cycle, and a multi-effect desalination; thermodynamic/environmental/financial study and MOPSO-based optimiz," Energy, Elsevier, vol. 261(PA).
    2. Meng, Yue & Wu, Haoyue & Zheng, Yuhang & Wang, Kunpeng & Duan, Yinying, 2022. "Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy," Energy, Elsevier, vol. 253(C).
    3. Chen, Yi & Niroumandi, Hossein & Duan, Yinying, 2021. "Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant," Energy, Elsevier, vol. 235(C).
    4. Wang, Qiang & Yang, Yueling, 2023. "Biomass possessing toward an efficient arrangement using a novel framework of waste-to-useful products: MOPSO optimization and comprehensive thermodynamic and cost analyses," Energy, Elsevier, vol. 266(C).
    5. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    6. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    7. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    8. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    9. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    10. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
    11. Liu, Fei & Yang, Changjin & Li, Biao & Silang, Yangji & Zhu, Yuhui & Farkoush, Saeid Gholami, 2022. "Thermodynamic and economic sensitivity analyses of a geothermal-based trigeneration system; performance enhancement through determining the best zeotropic working fluid," Energy, Elsevier, vol. 246(C).
    12. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    13. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    14. Wang, Erlei & Xia, Jiangying & Li, Jia & Sun, Xianke & Li, Hao, 2022. "Parameters exploration of SOFC for dynamic simulation using adaptive chaotic grey wolf optimization algorithm," Energy, Elsevier, vol. 261(PA).
    15. Tian, Cong & Su, Chang & Yang, Chao & Wei, Xiwen & Pang, Peng & Xu, Jianguo, 2023. "Exergetic and economic evaluation of a novel integrated system for cogeneration of power and freshwater using waste heat recovery of natural gas combined cycle," Energy, Elsevier, vol. 264(C).
    16. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    17. Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).
    18. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
    19. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    20. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222024173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.