IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225011454.html
   My bibliography  Save this article

Impact of dissociated methanol gas direct injection strategy on performance of port-injection methanol engines under dilution combustion condition

Author

Listed:
  • Xiangyang, Wang
  • Yu, Liu
  • Xiaoping, Li
  • Beiping, Jiang
  • Fangxi, Xie
  • Zhaohui, Jin
  • Huili, Dou

Abstract

Methanol is the most promising carbon-neutral alternative fuel for the future. This paper studies the impact of DMG (dissociated methanol gas) double injection parameters in a methanol port injection engine to enhance the improvement of DMG on methanol dilution combustion performance. Additionally, it seeks to understand the optimization results of DMG direct double injection parameters for combustion performance at different DMG blending ratios. Optimizing DMG double injection parameters can effectively shorten CA10-IG (crank angle corresponding of 0 %–10 % heat release) and CA90-CA10 (crank angle corresponding of 10 %–90 % heat release), and reduce HC (hydrocarbons) and CO (carbon monoxide) emissions, BSFC (brake specific fuel consumption) and COVIMEP (coefficient of variation of indicated mean effective pressure), while slightly rising NOx (nitrogen oxides) emissions. As DMG blending ratio rises, optimization results of first and second injection timings remain constant, while second injection ratio decreases, reaching 40 %, 20 %, and 20 % at blending ratios of 10 %, 15 %, and 20 %. Moreover, DMG double injection extends the dilution combustion limit compared to single injection. At blending ratios of 10 %, 15 %, and 20 %, double injection reduces BSFC by 2.8 %, 1.4 %, and 1.2 % at the dilution combustion limit compared to single injection.

Suggested Citation

  • Xiangyang, Wang & Yu, Liu & Xiaoping, Li & Beiping, Jiang & Fangxi, Xie & Zhaohui, Jin & Huili, Dou, 2025. "Impact of dissociated methanol gas direct injection strategy on performance of port-injection methanol engines under dilution combustion condition," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011454
    DOI: 10.1016/j.energy.2025.135503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yongjian & Long, Wuqiang & Lu, Mingfei & Dong, Pengbo & Tian, Hua & Wang, Yang & Xie, Chunyang & Tang, Yuanyou & Zhang, Weiqi, 2024. "A quasi-dimensional model of multiple-cycle fuel film evaporation in a port fuel injection spark-ignition methanol marine engine," Energy, Elsevier, vol. 308(C).
    2. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    3. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    4. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    5. Jiang, Yankun & Chen, Yexin & Xie, Man, 2022. "Effects of blending dissociated methanol gas with the fuel in gasoline engine," Energy, Elsevier, vol. 247(C).
    6. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
    7. Cesur, Idris & Uysal, Fatih, 2024. "Experimental investigation and artificial neural network-based modelling of thermal barrier engine performance and exhaust emissions for methanol-gasoline blends," Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyang, Wang & Huili, Dou & Liang, Zhang & Tong, Wu & Shuzhe, Ma & Xiaoping, Li & Fangxi, Xie, 2025. "Influence of dissociated methanol gas direct injection pressure on the performance of methanol port injection engine," Energy, Elsevier, vol. 320(C).
    2. Shen, Bo & Su, Yan & Yu, Hao & Zhang, Yulin & Lang, Maochun & Yang, He, 2023. "Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load," Energy, Elsevier, vol. 282(C).
    3. Ding, Botao & Wang, Ying & Bai, Yuanqi & Xie, Manyao & Chen, Jinge, 2024. "Effects of PODE substitution rate and fuel injection timing on combustion, emission characteristic and energy balance in PODE-gasoline dual direct-injection engine," Energy, Elsevier, vol. 294(C).
    4. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    5. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2020. "The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols," Energies, MDPI, vol. 13(15), pages 1-14, July.
    6. Yuan, Chenheng & Lu, Jiangchuan & Li, Shilei, 2023. "Thermoelectric coupling effect of secondary injection on gasoline fuel spray and mixing of a free vibration combustion alternator," Energy, Elsevier, vol. 281(C).
    7. Wang, Xiaorong & Yan, Chenzhao & Zhang, Yan & Guo, Hongzhan & Xu, Cangsu & Jiang, Genzhu, 2024. "Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: Experimental and numerical analysis," Renewable Energy, Elsevier, vol. 227(C).
    8. Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
    9. Jiang, Zhenzhen, 2025. "Is the promotion policy for hydrogen fuel cell vehicles effective? Evidence from Chinese cities," Energy, Elsevier, vol. 320(C).
    10. Tian, Erlin & Lv, Guoning & Li, Zuhe, 2024. "Evaluation of emission of the hydrogen-enriched diesel engine through machine learning," Energy, Elsevier, vol. 307(C).
    11. Li, Ying & Huang, Yuping & Liang, Yu & Song, Chenxi & Liao, Suliang, 2024. "Economic and carbon reduction potential assessment of vehicle-to-grid development in guangdong province," Energy, Elsevier, vol. 302(C).
    12. Hussein Al-Yafei & Saleh Aseel & Ali Ansaruddin Kunju, 2025. "Evaluating the Sustainability of the Natural Gas-Based Methanol-to-Gasoline Industry: A Global Systematic Review," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
    13. Liang, Zhendong & Xie, Fangxi & Li, Qian & Su, Yan & Wang, Zhongshu & Dou, Huili & Li, Xiaoping, 2024. "Co-optimization and prediction of high-efficiency combustion and zero-carbon emission at part load in the hydrogen direct injection engine based on VVT, split injection and ANN," Energy, Elsevier, vol. 308(C).
    14. Szablowski, Lukasz & Wojcik, Malgorzata & Dybinski, Olaf, 2025. "Review of steam methane reforming as a method of hydrogen production," Energy, Elsevier, vol. 316(C).
    15. Xu, Cangsu & Liu, Weinan & Oppong, Francis & Wang, Qianwen & Sun, Zuo-Yu & Li, Xiaolu, 2022. "Investigations on cellularization instability of 2-ethylfuran," Renewable Energy, Elsevier, vol. 191(C), pages 447-458.
    16. Yu, Changyou & Guo, Liang & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Zhu, Genan & Jiang, Mengqi & Guo, Yanan & Yue, Fei, 2024. "Experimental and chemical kinetic study on effects of H2-DME fusion addition on laminar premixed flame speed and flame instability for ammonia composite combustion," Energy, Elsevier, vol. 310(C).
    17. Li, Bo & Zhong, Fei & Wang, Ruixin & Jiang, Yankun & Han, Rong, 2024. "A comparative analysis of the performances of a syngas port injection plus gasoline direct injection combined-injection spark-ignition engine under lean-homogeneous charge and Lean-Stratified Charge m," Energy, Elsevier, vol. 308(C).
    18. Ma, Yinjie & Zhao, Yuanhao & Yang, Dong & E, Jiaqiang & Zhao, Jialuo & Pan, Mingzhang, 2024. "Parametric study of combustion characteristics of diesel/methanol dual fuel engine using global sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 237(PB).
    19. Zhang, Lingzhi & Shi, Ruifeng & Ning, Jin & Jia, Limin & Lee, Kwang Y., 2025. "RAMS assessment methodology for road transport self-contained energy systems considering source-load dual uncertainty," Renewable Energy, Elsevier, vol. 239(C).
    20. Xu, Meng & Zhang, Silu & Li, Panwei & Weng, Zhixiong & Xie, Yang & Lan, Yan, 2024. "Energy-related carbon emission reduction pathways in Northwest China towards carbon neutrality goal," Applied Energy, Elsevier, vol. 358(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.