IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225011119.html
   My bibliography  Save this article

Is the promotion policy for hydrogen fuel cell vehicles effective? Evidence from Chinese cities

Author

Listed:
  • Jiang, Zhenzhen

Abstract

China has emerged as a global leader in promoting new energy vehicles; however, the impact of these efforts on the commercial vehicle sector remains limited. Hydrogen fuel cell vehicles are crucial for improving the environmental performance of commercial vehicles in China. This study evaluates the effectiveness of China's hydrogen fuel cell vehicle policies. Firstly, an evaluation index system for hydrogen fuel cell vehicle policies is established, quantifying the policy through two key metrics: policy comprehensiveness and policy synergy. Subsequently, city-level data from 84 cities (2018–2022) are analyzed to assess policy impacts on hydrogen fuel cell vehicles adoption. The results show that both policy comprehensiveness and synergy significantly drive hydrogen fuel cell vehicle sales growth. Early sales figures also strongly influence current trends. Therefore, promoting growth in hydrogen fuel cell vehicle sales can further enhance policy efforts while also accounting for the cumulative effects of initial promotional activities.

Suggested Citation

  • Jiang, Zhenzhen, 2025. "Is the promotion policy for hydrogen fuel cell vehicles effective? Evidence from Chinese cities," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011119
    DOI: 10.1016/j.energy.2025.135469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).
    2. Guy Meunier & Jean-Pierre Ponssard, 2020. "What policies for the hydrogen sector ? Lessons from city buses," Institut des Politiques Publiques halshs-03019425, HAL.
    3. Salvi, B.L. & Subramanian, K.A., 2015. "Sustainable development of road transportation sector using hydrogen energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1132-1155.
    4. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    5. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert & Turrentine, Thomas, 2017. "Barriers to the adoption of fuel cell vehicles: A qualitative investigation into early adopters attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 166-182.
    6. Rawat, Atul & Garg, Chandra Prakash & Sinha, Priyank, 2024. "Analysis of the key hydrogen fuel vehicles adoption barriers to reduce carbon emissions under net zero target in emerging market," Energy Policy, Elsevier, vol. 184(C).
    7. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    8. Zhu, Guangyan & Tian, Yajun & Liu, Min & Zhao, Yating & Wang, Wen & Wang, Minghua & Li, Quansheng & Xie, Kechang, 2023. "Comprehensive competitiveness assessment of ammonia-hydrogen fuel cell electric vehicles and their competitive routes," Energy, Elsevier, vol. 285(C).
    9. Jones, J. & Genovese, A. & Tob-Ogu, A., 2020. "Hydrogen vehicles in urban logistics: A total cost of ownership analysis and some policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    11. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    12. Nistor, Silviu & Dave, Saraansh & Fan, Zhong & Sooriyabandara, Mahesh, 2016. "Technical and economic analysis of hydrogen refuelling," Applied Energy, Elsevier, vol. 167(C), pages 211-220.
    13. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    14. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    15. Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
    16. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    17. Li, Chengzhe & Zhang, Libo & Ou, Zihan & Ma, Jiayu, 2022. "Using system dynamics to evaluate the impact of subsidy policies on green hydrogen industry in China," Energy Policy, Elsevier, vol. 165(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yunna & Liu, Fangtong & He, Jiaming & Wu, Man & Ke, Yiming, 2021. "Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target," Energy Policy, Elsevier, vol. 159(C).
    2. Zhao, Tian & Liu, Zhixin & Jamasb, Tooraj, 2022. "Developing hydrogen refueling stations: An evolutionary game approach and the case of China," Energy Economics, Elsevier, vol. 115(C).
    3. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    4. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    5. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    6. Brey, J.J. & Carazo, A.F. & Brey, R., 2018. "Exploring the marketability of fuel cell electric vehicles in terms of infrastructure and hydrogen costs in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2893-2899.
    7. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Asna Ashari, Parsa & Blind, Knut & Koch, Claudia, 2023. "Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    9. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    10. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Vallera, A.M. & Nunes, P.M. & Brito, M.C., 2021. "Why we need battery swapping technology," Energy Policy, Elsevier, vol. 157(C).
    12. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    13. He, Yong & Yuan, Jiaqi & Liao, Nuo, 2025. "Exploring the impact of government subsidy on technology innovation and pricing in green hydrogen supply chain," Energy, Elsevier, vol. 322(C).
    14. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Gregory Trencher & Achmed Edianto, 2021. "Drivers and Barriers to the Adoption of Fuel Cell Passenger Vehicles and Buses in Germany," Energies, MDPI, vol. 14(4), pages 1-26, February.
    16. Long Li & Shuqi Wang & Shengxi Zhang & Ding Liu & Shengbin Ma, 2023. "The Hydrogen Energy Infrastructure Location Selection Model: A Hybrid Fuzzy Decision-Making Approach," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    17. Yin, Ting & Chen, Siyuan & Wang, Ge & Tan, Yuxuan & Teng, Fei & Zhang, Qi, 2024. "Can subsidy policies achieve fuel cell logistics vehicle (FCLV) promotion targets? Evidence from the beijing-tianjin-hebei fuel cell vehicle demonstration city cluster in China," Energy, Elsevier, vol. 311(C).
    18. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    20. Rawat, Atul & Garg, Chandra Prakash & Sinha, Priyank, 2024. "Analysis of the key hydrogen fuel vehicles adoption barriers to reduce carbon emissions under net zero target in emerging market," Energy Policy, Elsevier, vol. 184(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225011119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.