IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs036054422201297x.html
   My bibliography  Save this article

Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach

Author

Listed:
  • Jafari, Hamed
  • Safarzadeh, Soroush
  • Azad-Farsani, Ehsan

Abstract

In this research, an aspect of sustainable development is investigated by considering the energy efficiency improvement of the hydrogen fuel cell cars on a supply chain including government, supplier, manufacturer, agency, and customers. The manufacturer produces the hydrogen fuel cell cars and sells them to customers via his agency. The monopolistic supplier procures the hydrogen fuel for customers. The manufacturer aims to improve the energy efficiency rate of his products by reducing their fuel consumption. In this setting, the government stimulates the manufacturer to invest in this scheme by paying a subsidy to him as well as by reducing his tax rate. Based on these governmental policies, the problem is investigated under different scenarios. Then, the game-theoretic frameworks are applied to make the equilibrium decisions. Finally, the given decisions are analyzed to reveal some managerial insights. It is found that the demand of the hydrogen fuel cell cars and the members’ profits increase as the efficiency improvement rate increases. Moreover, by increasing the subsidy rate paid to the manufacturer and by decreasing the tax rate imposed on him, the government can increase the demand of the hydrogen cars and provide more incentive for the members to incorporate into the business.

Suggested Citation

  • Jafari, Hamed & Safarzadeh, Soroush & Azad-Farsani, Ehsan, 2022. "Effects of governmental policies on energy-efficiency improvement of hydrogen fuel cell cars: A game-theoretic approach," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s036054422201297x
    DOI: 10.1016/j.energy.2022.124394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201297X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.
    2. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
    3. Hassan, Taimoor & Song, Huaming & Khan, Yasir & Kirikkaleli, Dervis, 2022. "Energy efficiency a source of low carbon energy sources? Evidence from 16 high-income OECD economies," Energy, Elsevier, vol. 243(C).
    4. Guo, Tianyu & Li, Peng & Wang, Zixuan & Shi, Ruyu & Han, Zhonghe & Xia, Hui & Li, Jianyi, 2021. "Integrated modelling and optimal operation analysis of multienergy systems based on Stackelberg game theory," Energy, Elsevier, vol. 236(C).
    5. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    6. Abeykoon, Chamil & McMillan, Alison & Nguyen, Bao Kha, 2021. "Energy efficiency in extrusion-related polymer processing: A review of state of the art and potential efficiency improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Budi, Rizki Firmansyah Setya & Sarjiya, & Hadi, Sasongko Pramono, 2021. "Multi-level game theory model for partially deregulated generation expansion planning," Energy, Elsevier, vol. 237(C).
    8. Zhang, Cong & Greenblatt, Jeffery B. & Wei, Max & Eichman, Josh & Saxena, Samveg & Muratori, Matteo & Guerra, Omar J., 2020. "Flexible grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions," Applied Energy, Elsevier, vol. 278(C).
    9. Nie, Pu-yan & Yang, Yong-cong & Chen, You-hua & Wang, Zhao-hui, 2016. "How to subsidize energy efficiency under duopoly efficiently?," Applied Energy, Elsevier, vol. 175(C), pages 31-39.
    10. Meng, Di & Shao, Cheng & Zhu, Li, 2022. "Two-level comprehensive energy-efficiency quantitative diagnosis scheme for ethylene-cracking furnace with multi-working-condition of fault and exception operation," Energy, Elsevier, vol. 239(PA).
    11. Lijing Zhu & Jingzhou Wang & Arash Farnoosh & Xunzhang Pan, 2021. "A Game-Theory Analysis of Electric Vehicle Adoption in Beijing under License Plate Control Policy," Working Papers hal-03500766, HAL.
    12. Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
    13. Oh, Sechul & Park, Cheolwoong & Nguyen, Ducduy & Kim, Seonyeob & Kim, Yongrae & Choi, Young & Lee, Jeongwoo, 2021. "Investigation on the operable range and idle condition of hydrogen-fueled spark ignition engine for unmanned aerial vehicle (UAV)," Energy, Elsevier, vol. 237(C).
    14. Zhu, Li & Li, Zhe & Chen, Junghui, 2021. "Evaluating and predicting energy efficiency using slow feature partial least squares method for large-scale chemical plants," Energy, Elsevier, vol. 230(C).
    15. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for assessing residential energy-efficiency program considering rebound, consumer behavior, and government policies," Applied Energy, Elsevier, vol. 233, pages 44-61.
    17. Kimmich, Christian, 2013. "Linking action situations: Coordination, conflicts, and evolution in electricity provision for irrigation in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 90(C), pages 150-158.
    18. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Udemba, Edmund Ntom & Tosun, Merve, 2022. "Energy transition and diversification: A pathway to achieve sustainable development goals (SDGs) in Brazil," Energy, Elsevier, vol. 239(PC).
    20. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza & Piran, Md Jalil, 2020. "A game theoretic approach for the duopoly pricing of energy-efficient appliances regarding innovation protection and social welfare," Energy, Elsevier, vol. 200(C).
    21. Sarjiya, & Budi, Rizki Firmansyah Setya & Hadi, Sasongko Pramono, 2019. "Game theory for multi-objective and multi-period framework generation expansion planning in deregulated markets," Energy, Elsevier, vol. 174(C), pages 323-330.
    22. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    23. Nie, Pu-Yan & Wang, Chan & Yang, Yon-Cong, 2017. "Comparison of energy efficiency subsidies under market power," Energy Policy, Elsevier, vol. 110(C), pages 144-149.
    24. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    25. Knight, Patrick & Biewald, Bruce & Takahashi, Kenji, 2022. "The cost of energy efficiency programs: Estimates from utility-reported datasets," Energy, Elsevier, vol. 239(PE).
    26. Zakari, Abdulrasheed & Khan, Irfan & Tan, Duojiao & Alvarado, Rafael & Dagar, Vishal, 2022. "Energy efficiency and sustainable development goals (SDGs)," Energy, Elsevier, vol. 239(PE).
    27. Smoliński, Adam & Howaniec, Natalia & Gąsior, Rafał & Polański, Jarosław & Magdziarczyk, Małgorzata, 2021. "Hydrogen rich gas production through co-gasification of low rank coal, flotation concentrates and municipal refuse derived fuel," Energy, Elsevier, vol. 235(C).
    28. Domagoj Badanjak & Hrvoje Pandžić, 2021. "Distribution-Level Flexibility Markets—A Review of Trends, Research Projects, Key Stakeholders and Open Questions," Energies, MDPI, vol. 14(20), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "A game theoretic approach for time-of-use pricing with considering renewable portfolio standard effects and investment in energy storage technologies under government interventions," Energy, Elsevier, vol. 282(C).
    2. Guan, Zepeng & Hossain, Mohammad Razib & Sheikh, Muhammad Ramzan & Khan, Zeeshan & Gu, Xiao, 2023. "Unveiling the interconnectedness between energy-related GHGs and pro-environmental energy technology: Lessons from G-7 economies with MMQR approach," Energy, Elsevier, vol. 281(C).
    3. Ying Li & Mi Zhou & Huaping Sun & Jia Liu, 2023. "Assessment of environmental tax and green bonds impacts on energy efficiency in the European Union," Economic Change and Restructuring, Springer, vol. 56(2), pages 1063-1081, April.
    4. Hortay, Olivér & Rozner, Bence Péter, 2019. "Allocating renewable subsidies," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 236-247.
    5. Fischer, Robert & Toffolo, Andrea, 2022. "Is total system cost minimization fair to all the actors of an energy system? Not according to game theory," Energy, Elsevier, vol. 239(PC).
    6. Ping Han & Ziyu Zhou, 2023. "The Harmonious Relationship between Energy Utilization Efficiency and Industrial Structure Development under Carbon Emission Constraints: Measurement, Quantification, and Identification," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    7. Zi‐rui Chen & Pu‐yan Nie, 2020. "Implications of a cap‐and‐trade system for emission reductions under an asymmetric duopoly," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3135-3145, December.
    8. Muhammad Mushafiq & Muzammil Muhammad Khan Arisar & Hanan Tariq & Stanislaw Czapp, 2023. "Energy Efficiency and Economic Policy: Comprehensive Theoretical, Empirical, and Policy Review," Energies, MDPI, vol. 16(5), pages 1-22, March.
    9. Fan, Lurong & Ma, Ning & Zhang, Wen, 2023. "Multi-stakeholder equilibrium-based subsidy allocation mechanism for promoting coalbed methane scale extraction-utilization," Energy, Elsevier, vol. 277(C).
    10. Gong, Shixin, 2023. "Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system," Energy, Elsevier, vol. 267(C).
    11. Yan Lu & Xu Yang & Yixiang Ma & Lean Yu, 2022. "Rebound Effect of China’s Electric Power Demand in the Context of Technological Innovation," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    12. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    13. Mehmet Balcilar & Daberechi Chikezie Ekwueme & Hakki Ciftci, 2023. "Assessing the Effects of Natural Resource Extraction on Carbon Emissions and Energy Consumption in Sub-Saharan Africa: A STIRPAT Model Approach," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    14. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    15. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    16. Ling Bai & Tianran Guo & Wei Xu & Kang Luo, 2022. "The Spatial Differentiation and Driving Forces of Ecological Welfare Performance in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    17. Nie, Pu-yan & Wang, Chan & Wen, Hong-xing, 2021. "Horizontal mergers under uniform resource constraints," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    18. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    19. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    20. Sean Murphy & Natalie Mims Frick, 2023. "Estimating the Drivers of the Cost of Saved Electricity in Utility Customer-Funded Energy Efficiency Programs," Energies, MDPI, vol. 16(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s036054422201297x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.