IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v286y2021ics0306261921000519.html
   My bibliography  Save this article

Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities

Author

Listed:
  • Freire Ordóñez, Diego
  • Shah, Nilay
  • Guillén-Gosálbez, Gonzalo

Abstract

Electrofuels from CO2 and H2O have recently emerged as a promising alternative to reduce the carbon footprint of fossil fuels, yet their full economic and environmental performance remains unclear. Here, the production of renewable petrol from electrolysis and co-electrolysis-based processes is critically assessed, combining a palette of tools encompassing process simulation, costing evaluation, life-cycle assessment, and uncertainty analysis. Our results show that electrofuels are currently very expensive (10.4-fold higher cost compared to petrol), even when considering externalities (indirect cost of environmental impacts). Electrofuels could become cheaper than the fossil analogue, yet this would require relying on low-cost renewable electricity, which may find alternative uses. From an environmental perspective, we found that despite reducing the carbon footprint of the fossil counterpart, electrofuels could exacerbate impacts on human health due to burden-shifting. Overall, our work highlights the need to embrace impacts beyond climate change to ensure a comprehensive assessment of alternative fuels, and to monetise them to underpin a fair comparison with the fossil analogue.

Suggested Citation

  • Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000519
    DOI: 10.1016/j.apenergy.2021.116488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921000519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert S. Frazier & Enze Jin & Ajay Kumar, 2015. "Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning," Energies, MDPI, vol. 8(1), pages 1-24, January.
    2. Mahrokh Samavati & Andrew Martin & Massimo Santarelli & Vera Nemanova, 2018. "Synthetic Diesel Production as a Form of Renewable Energy Storage," Energies, MDPI, vol. 11(5), pages 1-21, May.
    3. Algunaibet, Ibrahim M. & Pozo, Carlos & Galán-Martín, Ángel & Guillén-Gosálbez, Gonzalo, 2019. "Quantifying the cost of leaving the Paris Agreement via the integration of life cycle assessment, energy systems modeling and monetization," Applied Energy, Elsevier, vol. 242(C), pages 588-601.
    4. Saeidi, Samrand & Najari, Sara & Fazlollahi, Farhad & Nikoo, Maryam Khoshtinat & Sefidkon, Fatemeh & Klemeš, Jiří Jaromír & Baxter, Larry L., 2017. "Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1292-1311.
    5. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2018. "Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons," Applied Energy, Elsevier, vol. 215(C), pages 309-320.
    6. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
    7. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    8. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    9. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    10. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    11. Iribarren, Diego & Petrakopoulou, Fontina & Dufour, Javier, 2013. "Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery," Energy, Elsevier, vol. 50(C), pages 477-485.
    12. Bo P Weidema, 2015. "Comparing Three Life Cycle Impact Assessment Methods from an Endpoint Perspective," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 20-26, February.
    13. Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
    14. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    15. Wang, Ligang & Chen, Ming & Küngas, Rainer & Lin, Tzu-En & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 174-187.
    16. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    17. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David, 2014. "Synthetic fuel production costs by means of solid oxide electrolysis cells," Energy, Elsevier, vol. 76(C), pages 104-113.
    18. Andreas Goldmann & Waldemar Sauter & Marcel Oettinger & Tim Kluge & Uwe Schröder & Joerg R. Seume & Jens Friedrichs & Friedrich Dinkelacker, 2018. "A Study on Electrofuels in Aviation," Energies, MDPI, vol. 11(2), pages 1-23, February.
    19. Welisch, Marijke & Poudineh, Rahmatallah, 2020. "Auctions for allocation of offshore wind contracts for difference in the UK," Renewable Energy, Elsevier, vol. 147(P1), pages 1266-1274.
    20. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    21. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Rafael d’Amore-Domenech & Isabel Carrillo & Emilio Navarro & Teresa J. Leo, 2023. "Alkaline Electrolysis for Hydrogen Production at Sea: Perspectives on Economic Performance," Energies, MDPI, vol. 16(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Herz, Gregor & Rix, Christopher & Jacobasch, Eric & Müller, Nils & Reichelt, Erik & Jahn, Matthias & Michaelis, Alexander, 2021. "Economic assessment of Power-to-Liquid processes – Influence of electrolysis technology and operating conditions," Applied Energy, Elsevier, vol. 292(C).
    4. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    5. Lester, Mason Scott & Bramstoft, Rasmus & Münster, Marie, 2020. "Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study," Energy, Elsevier, vol. 199(C).
    6. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    7. Marchese, Marco & Chesta, Simone & Santarelli, Massimo & Lanzini, Andrea, 2021. "Techno-economic feasibility of a biomass-to-X plant: Fischer-Tropsch wax synthesis from digestate gasification," Energy, Elsevier, vol. 228(C).
    8. Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: A thermodynamic assessment," Energy, Elsevier, vol. 82(C), pages 714-721.
    9. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
    11. Wang, Ligang & Zhang, Yumeng & Li, Chengzhou & Pérez-Fortes, Mar & Lin, Tzu-En & Maréchal, François & Van herle, Jan & Yang, Yongping, 2020. "Triple-mode grid-balancing plants via biomass gasification and reversible solid-oxide cell stack: Concept and thermodynamic performance," Applied Energy, Elsevier, vol. 280(C).
    12. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Estefania Vega Puga & Gkiokchan Moumin & Nicole Carina Neumann & Martin Roeb & Armin Ardone & Christian Sattler, 2022. "Holistic View on Synthetic Natural Gas Production: A Technical, Economic and Environmental Analysis," Energies, MDPI, vol. 15(5), pages 1-27, February.
    14. König, Daniel H. & Baucks, Nadine & Dietrich, Ralph-Uwe & Wörner, Antje, 2015. "Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2," Energy, Elsevier, vol. 91(C), pages 833-841.
    15. Simon Pratschner & Martin Hammerschmid & Florian J. Müller & Stefan Müller & Franz Winter, 2022. "Simulation of a Pilot Scale Power-to-Liquid Plant Producing Synthetic Fuel and Wax by Combining Fischer–Tropsch Synthesis and SOEC," Energies, MDPI, vol. 15(11), pages 1-22, June.
    16. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    17. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    19. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    20. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.