IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924025364.html
   My bibliography  Save this article

Co-production of hydrogen and biochar from methanol autothermal reforming combining excess heat recovery

Author

Listed:
  • Chen, Wei-Hsin
  • Teng, Chen-Hsiang
  • Chein, Rei-Yu
  • Nguyen, Thanh-Binh
  • Dong, Cheng-Di
  • Kwon, Eilhann E.

Abstract

This research conducted an innovative hydrogen and biochar co-production system via methanol autothermal reforming (ATR) combing excess heat recovery. Using the oxygen/carbon (O2/C) ratio, steam/carbon (S/C) ratio, and preheating temperature as the operating conditions for the hydrogen production, methanol conversion and hydrogen yield are in the ranges of 70.36–99.52 % and 1.44–1.98 mol∙(mol CH3OH)−1, respectively. The temperature of the gas product from ATR is between 300 and 500 °C. An H2 yield prediction model based on the decision tree equipped in MATLAB is established using the obtained experimental data. The torrefaction of spent coffee grounds (SCG) is integrated with methanol ATR, and the excess heat in high-temperature gas products is used as the heat source. Compared with raw SCG (18.20 MJ∙kg−1), the higher heating value of produced biochar can be up to 22.46 MJ∙kg−1, and the fixed carbon increases from 45.91 wt% up to 54.55 wt%. The contact angle also rises from 81.75° to 102.63°. Therefore, the integrated system not only enhances the energy value of biomass but also presents a dual-benefit strategy for sustainable biomass utilization and waste management, exemplifying waste and waste heat valorization.

Suggested Citation

  • Chen, Wei-Hsin & Teng, Chen-Hsiang & Chein, Rei-Yu & Nguyen, Thanh-Binh & Dong, Cheng-Di & Kwon, Eilhann E., 2025. "Co-production of hydrogen and biochar from methanol autothermal reforming combining excess heat recovery," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025364
    DOI: 10.1016/j.apenergy.2024.125152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.
    2. Hanjie Dou & Changyuan Zhai & Liping Chen & Xiu Wang & Wei Zou, 2021. "Comparison of Orchard Target-Oriented Spraying Systems Using Photoelectric or Ultrasonic Sensors," Agriculture, MDPI, vol. 11(8), pages 1-18, August.
    3. Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
    4. Lee, Kuan-Ting & Cheng, Ching-Lin & Lee, Da-Sheng & Chen, Wei-Hsin & Vo, Dai-Viet N. & Ding, Lu & Lam, Su Shiung, 2022. "Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel," Energy, Elsevier, vol. 239(PE).
    5. Jezerska, Lucie & Sassmanova, Veronika & Prokes, Rostislav & Gelnar, Daniel, 2023. "The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw," Renewable Energy, Elsevier, vol. 210(C), pages 346-354.
    6. Runping Ye & Lixuan Ma & Jianing Mao & Xinyao Wang & Xiaoling Hong & Alessandro Gallo & Yanfu Ma & Wenhao Luo & Baojun Wang & Riguang Zhang & Melis Seher Duyar & Zheng Jiang & Jian Liu, 2024. "A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Plaza, M.G. & González, A.S. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications," Applied Energy, Elsevier, vol. 99(C), pages 272-279.
    8. Inioluwa Christianah Afolabi & Emmanuel I. Epelle & Burcu Gunes & Fatih Güleç & Jude A. Okolie, 2022. "Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes," Clean Technol., MDPI, vol. 4(4), pages 1-15, November.
    9. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    10. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    11. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    2. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
    3. Faba, Laura & Díaz, Eva & Ordóñez, Salvador, 2015. "Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 273-287.
    4. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Ha, Chan & Zhou, Zhaozhou & Qin, Jiang & Wang, Cong & Liu, Zekuan & Leng, Shuang, 2024. "Structural optimization calculation of methanol spiral tube reformer based on waste heat utilization and experimental verification of reactor performance," Renewable Energy, Elsevier, vol. 226(C).
    6. Rezapour, Mojtaba & Gholizadeh, Mohammad, 2021. "Analysis of methanol thermochemical reactor with volumetric solar heat flux based on Parabolic Trough Concentrator," Renewable Energy, Elsevier, vol. 180(C), pages 1088-1100.
    7. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    8. Wei, Ranran & Yin, Kexin & Zhang, Runqi & Xu, Wenwu & Zhu, Zhaoyou & Wang, Yinglong & Cui, Peizhe, 2025. "Techno-economic and thermodynamic analysis of hydrogen production process via plasma co-gasification of coal and biomass," Energy, Elsevier, vol. 314(C).
    9. Zhu, Xianqing & Xu, Mian & Hu, Shiyang & Xia, Ao & Huang, Yun & Luo, Zhang & Xue, Xiao & Zhou, Yao & Zhu, Xun & Liao, Qiang, 2024. "A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene," Applied Energy, Elsevier, vol. 367(C).
    10. Devasahayam, Sheila & Albijanic, Boris, 2024. "Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms," Renewable Energy, Elsevier, vol. 222(C).
    11. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    12. Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
    13. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    14. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    15. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    16. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    17. Peter N. Ciesielski & M. Brennan Pecha & Vivek S. Bharadwaj & Calvin Mukarakate & G. Jeremy Leong & Branden Kappes & Michael F. Crowley & Seonah Kim & Thomas D. Foust & Mark R. Nimlos, 2018. "Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    18. Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into high quality hydrochar and value-added liquid products using different zeolite catalysts," Renewable Energy, Elsevier, vol. 227(C).
    19. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    20. Dong, Shengfei & Liu, Ziyu & Yang, Xiaoyi, 2024. "Exploration of hydrothermal liquefaction of multiple algae to improve bio-crude quality and carbohydrate utilization," Applied Energy, Elsevier, vol. 361(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.