Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xing, Jiangkuan & Luo, Kun & Wang, Haiou & Gao, Zhengwei & Fan, Jianren, 2019. "A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches," Energy, Elsevier, vol. 188(C).
- Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Wei-Hsin & Teng, Chen-Hsiang & Chein, Rei-Yu & Nguyen, Thanh-Binh & Dong, Cheng-Di & Kwon, Eilhann E., 2025. "Co-production of hydrogen and biochar from methanol autothermal reforming combining excess heat recovery," Applied Energy, Elsevier, vol. 381(C).
- Gawusu, Sidique, 2024. "Evolving energy landscapes: A computational analysis of the determinants of energy poverty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Büyükkanber, Kaan & Haykiri-Acma, Hanzade & Yaman, Serdar, 2023. "Calorific value prediction of coal and its optimization by machine learning based on limited samples in a wide range," Energy, Elsevier, vol. 277(C).
- Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
- Santhappan, Joseph Sekhar & Boddu, Muralikrishna & Gopinath, Arun S. & Mathimani, Thangavel, 2024. "Analysis of 27 supervised machine learning models for the co-gasification assessment of peanut shell and spent tea residue in an open-core downdraft gasifier," Renewable Energy, Elsevier, vol. 235(C).
- Chen, Xiaoling & Zhang, Yongxing & Xu, Baoshen & Li, Yifan, 2022. "A simple model for estimation of higher heating value of oily sludge," Energy, Elsevier, vol. 239(PA).
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
- Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
- Jia, Liangyuan & Shao, Wanyun & Wang, Jingjing & Qian, Yingying & Chen, Yingquan & Yang, Qingchun, 2024. "Machine learning-aided prediction of bio-BTX and olefins production from zeolite-catalyzed biomass pyrolysis," Energy, Elsevier, vol. 306(C).
- Anna Matveeva & Aleksey Bychkov, 2022. "How to Train an Artificial Neural Network to Predict Higher Heating Values of Biofuel," Energies, MDPI, vol. 15(19), pages 1-13, September.
- Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
- Mahfud, Mahfud & Ramadhana, Ahmad Habib & Novita, Ninda Ayu & Kurniawansyah, Firman & Sardi, Bambang & Mirzan, Mohamad & Mahmudin, Lufsyi & Ali, Amar Akbar & Indrawan, Natarianto, 2025. "Cleaner production of bio-oil from macroalgae and low-rank coal mixture by pyrolysis in a microwave reactor integrated with a distillation column," Energy, Elsevier, vol. 314(C).
- Thakur, Disha & Kumar, Sanjay & Kumar, Vineet & Kaur, Tarlochan, 2024. "Estimation of calorific value using an artificial neural network based on stochastic ultimate analysis," Renewable Energy, Elsevier, vol. 228(C).
- Esraa Q. Shehab & Farah Faaq Taha & Sabih Hashim Muhodir & Hamza Imran & Krzysztof Adam Ostrowski & Marcin Piechaczek, 2024. "Gradient Boosting Regression Tree Optimized with Slime Mould Algorithm to Predict the Higher Heating Value of Municipal Solid Waste," Energies, MDPI, vol. 17(17), pages 1-19, August.
- Bisen, Divya & Chouhan, Ashish Pratap Singh & Pant, Manish & Chakma, Sankar, 2025. "Advancement of thermochemical conversion and the potential of biomasses for production of clean energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
- Onsree, Thossaporn & Tippayawong, Nakorn & Phithakkitnukoon, Santi & Lauterbach, Jochen, 2022. "Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass," Energy, Elsevier, vol. 249(C).
- Ma, Jingjing & Zhang, Shuai & Liu, Xiangjun & Wang, Junqi, 2025. "Neural network-based prediction of levoglucosan yield: A novel modeling approach," Energy, Elsevier, vol. 320(C).
- Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
- Xiaorui Liu & Haiping Yang & Jiamin Yang & Fang Liu, 2022. "Application of Random Forest Model Integrated with Feature Reduction for Biomass Torrefaction," Sustainability, MDPI, vol. 14(23), pages 1-11, December.
- Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
More about this item
Keywords
machine learning; biomass; higher heating value; biofuel; artificial neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:4:y:2022:i:4:p:75-1241:d:980644. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.