CO2-induced co-pyrolysis of Pennisetum hydridum and waste tires: Multi-objective optimization of its synergies and pyrolytic oil, char and gas outputs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.134670
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Farooq, Muhammad Zohaib & Zeeshan, Muhammad & Iqbal, Saeed & Ahmed, Naveed & Shah, Syed Asfand Yar, 2018. "Influence of waste tire addition on wheat straw pyrolysis yield and oil quality," Energy, Elsevier, vol. 144(C), pages 200-206.
- Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
- Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
- Khan, Shoaib Raza & Zeeshan, Muhammad, 2022. "Catalytic potential of low-cost natural zeolite and influence of various pretreatments of biomass on pyro-oil up-gradation during co-pyrolysis with scrap rubber tires," Energy, Elsevier, vol. 238(PB).
- Sun, Hao & Bi, Haobo & Jiang, Chunlong & Ni, Zhanshi & Tian, Junjian & Zhou, Wenliang & Qiu, Zhicong & Lin, Qizhao, 2022. "Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products," Renewable Energy, Elsevier, vol. 184(C), pages 1-14.
- Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
- Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
- Niu, Miaomiao & Sun, Rongyue & Ding, Kuan & Gu, Haiming & Cui, Xiaobo & Wang, Liang & Hu, Jichu, 2022. "Synergistic effect on thermal behavior and product characteristics during co-pyrolysis of biomass and waste tire: Influence of biomass species and waste blending ratios," Energy, Elsevier, vol. 240(C).
- Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
- Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
- Zhang, Shuping & Su, Yinhai & Xu, Dan & Zhu, Shuguang & Zhang, Houlei & Liu, Xinzhi, 2018. "Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk," Energy, Elsevier, vol. 149(C), pages 804-813.
- Sahu, Pradeep & Vairakannu, Prabu, 2023. "CO2 based co-gasification of printed circuit board with high ash coal," Energy, Elsevier, vol. 263(PE).
- Tong, Wei & Cai, Zelong & Liu, Qingcai & Ren, Shan & Kong, Ming, 2020. "Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics," Energy, Elsevier, vol. 211(C).
- Kumar, Akash & Yan, Beibei & Tao, Junyu & Li, Jian & Kumari, Lata & Oba, Belay Tafa & Aborisade, Moses Akintayo & Chen, Guanyi, 2022. "Influence of waste plastic on pyrolysis of low-lipid microalgae: A study on thermokinetics, behaviors, evolved gas characteristics, and products distribution," Renewable Energy, Elsevier, vol. 185(C), pages 416-430.
- Xu, Donghua & Lin, Junhao & Ma, Rui & Fang, Lin & Sun, Shichang & Luo, Juan, 2022. "Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation," Renewable Energy, Elsevier, vol. 184(C), pages 124-133.
- Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
- Kim, Jung-Hun & Oh, Jeong-Ik & Lee, Jechan & Kwon, Eilhann E., 2019. "Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium," Energy, Elsevier, vol. 179(C), pages 163-172.
- Chen, Rongjie & Lun, Liyong & Cong, Kunlin & Li, Qinghai & Zhang, Yanguo, 2019. "Insights into pyrolysis and co-pyrolysis of tobacco stalk and scrap tire: Thermochemical behaviors, kinetics, and evolved gas analysis," Energy, Elsevier, vol. 183(C), pages 25-34.
- Zhang, Huiyan & Zhu, Yiwen & Liu, Qingyu & Li, Xiaowen, 2022. "Preparation of porous carbon materials from biomass pyrolysis vapors for hydrogen storage," Applied Energy, Elsevier, vol. 306(PB).
- Mustapha Danladi Ibrahim & Yousif Abdalla Abakr & Suyin Gan & Lai Yee Lee & Suchithra Thangalazhy-Gopakumar, 2022. "Intermediate Pyrolysis of Bambara Groundnut Shell (BGS) in Various Inert Gases (N 2 , CO 2 , and N 2 /CO 2 )," Energies, MDPI, vol. 15(22), pages 1-16, November.
- Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
- Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Yitao & Wu, Yueqiang & Sun, Huiming & Guo, Chuanxiang & Wang, Jun & Chen, Ruiyu & Pan, Renming, 2025. "Proactive insights on thermal interactions between textiles and flammable liquids: A comprehensive analysis of thermal characteristics, pyrolysis kinetics and gas emission patterns, using polyamide an," Energy, Elsevier, vol. 320(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shan, Tilun & Chen, Hu & Liu, Ting & Ma, Zizhen & Tan, Yan & Zhang, Huawei, 2025. "Synergistic effects in the Co-pyrolysis of waste tires, plastics, and corn stalks: Kinetic and thermodynamic analyses for enhanced resource utilization," Renewable Energy, Elsevier, vol. 238(C).
- Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
- Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
- Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
- Gao, Qi & Ni, Liangmeng & He, Yuyu & Hou, Yanmei & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of hydrothermal pretreatment on deashing and pyrolysis characteristics of bamboo shoot shells," Energy, Elsevier, vol. 247(C).
- Sobek, Szymon & Werle, Sebastian, 2020. "Isoconversional determination of the apparent reaction models governing pyrolysis of wood, straw and sewage sludge, with an approach to rate modelling," Renewable Energy, Elsevier, vol. 161(C), pages 972-987.
- Liu, Ruijia & Liu, Guijian & Yousaf, Balal & Niu, Zhiyuan & Abbas, Qumber, 2022. "Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Xu, Hao & Cheng, Shuo & Hungwe, Douglas & Yoshikawa, Kunio & Takahashi, Fumitake, 2022. "Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors," Applied Energy, Elsevier, vol. 327(C).
- Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
- Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Siddiqi, Hammad & Bal, Manisha & Kumari, Usha & Meikap, B.C., 2020. "In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential," Renewable Energy, Elsevier, vol. 148(C), pages 756-771.
- Guo, Shuaihua & Wang, Zhiwei & Chen, Gaofeng & Chen, Yan & Wu, Mengge & Zhang, Mengju & Li, Zaifeng & Yang, Shuhua & Lei, Tingzhou, 2024. "Catalytic co-pyrolysis of poplar tree and polystyrene with HZSM-5 and Fe/HZSM-5 for production of light aromatic hydrocarbons," Energy, Elsevier, vol. 298(C).
- Zheng, Anqing & Li, Luwei & Tippayawong, Nakorn & Huang, Zhen & Zhao, Kun & Wei, Guoqiang & Zhao, Zengli & Li, Haibin, 2020. "Reducing emission of NOx and SOx precursors while enhancing char production from pyrolysis of sewage sludge by torrefaction pretreatment," Energy, Elsevier, vol. 192(C).
- Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015.
"Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model,"
Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
- Jian-Lei Mo & Joachim Schleich & Lei Zhu & Ying Fan, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Grenoble Ecole de Management (Post-Print) hal-01265934, HAL.
- Jian-Lei Mo & Joachim Schleich & Lei Zhu & Ying Fan, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Post-Print hal-01265934, HAL.
- Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
- Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
- Cormos, Calin-Cristian & Dragan, Mihaela & Petrescu, Letitia & Cormos, Ana-Maria & Dragan, Simion & Bathori, Arthur-Maximilian & Galusnyak, Stefan-Cristian, 2024. "Synthetic natural gas (SNG) production by biomass gasification with CO2 capture: Techno-economic and life cycle analysis (LCA)," Energy, Elsevier, vol. 312(C).
- Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
More about this item
Keywords
; ; ; ; ;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:317:y:2025:i:c:s0360544225003123. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.