IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp972-987.html

Isoconversional determination of the apparent reaction models governing pyrolysis of wood, straw and sewage sludge, with an approach to rate modelling

Author

Listed:
  • Sobek, Szymon
  • Werle, Sebastian

Abstract

Within the presented paper, different approaches to determine kinetic reaction models governing pyrolysis of three waste biomass types: waste wood (WW), waste straw (WS) and sewage sludge (SS) based on 5 dynamic heating runs (5, 10, 20, 30, 40 K/min) at TGA are presented and discussed. Fuel properties with lignocelluloses content of the investigated feedstock are presented and discussed. Ambiguous results of the generalized master-plot method draw the idea of determining actual reaction models using the isoconversional methodology. Friedman method provided apparent activation energies as a root for further calculations being the 48.1–294.3 kJ/mol for WS, 21.0–361.9 kJ/mol for WW and 58.1–484.3 kJ/mol for SS. Isoconversional pre-exponential factors were determined using linear compensation effect and were 7.2·106–1.8·1021 1/min, 1.6·104–1.2·1025 1/min, and 1.5·109–3.2·1030 1/min for WS, WW, and SS respectively. Based on isoconversional parameters, actual profiles of reaction models were estimated using the t-Students distribution for 95% confidence intervals and verified in the modelling of pyrolysis conversion profiles. Isoconversional pyrolysis models resulted in fitting to experimental profiles with non-linear coefficients of determination equal to 0.9912, 0.9876, and 0.9406 for WW, WS, and SS respectively.

Suggested Citation

  • Sobek, Szymon & Werle, Sebastian, 2020. "Isoconversional determination of the apparent reaction models governing pyrolysis of wood, straw and sewage sludge, with an approach to rate modelling," Renewable Energy, Elsevier, vol. 161(C), pages 972-987.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:972-987
    DOI: 10.1016/j.renene.2020.07.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Farooq, Muhammad Zohaib & Zeeshan, Muhammad & Iqbal, Saeed & Ahmed, Naveed & Shah, Syed Asfand Yar, 2018. "Influence of waste tire addition on wheat straw pyrolysis yield and oil quality," Energy, Elsevier, vol. 144(C), pages 200-206.
    2. Sobek, Szymon & Werle, Sebastian, 2019. "Solar pyrolysis of waste biomass: Part 1 reactor design," Renewable Energy, Elsevier, vol. 143(C), pages 1939-1948.
    3. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    4. Sobek, Szymon & Werle, Sebastian, 2020. "Solar pyrolysis of waste biomass: Part 2 kinetic modeling and methodology of the determination of the kinetic parameters for solar pyrolysis of sewage sludge," Renewable Energy, Elsevier, vol. 153(C), pages 962-974.
    5. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norbert Miskolczi & Szabina Tomasek, 2022. "Investigation of Pyrolysis Behavior of Sewage Sludge by Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectrometry Using Different Heating Rates," Energies, MDPI, vol. 15(14), pages 1-18, July.
    2. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    3. Mlonka-Mędrala, Agata & Sobek, Szymon & Wądrzyk, Mariusz & Werle, Sebastian & Ionescu, Gabriela & Mărculescu, Cosmin & Magdziarz, Aneta, 2025. "Energy and material recovery from bone waste: Steam gasification for biochar and syngas production in a circular economy framework," Energy, Elsevier, vol. 325(C).
    4. Sobek, S. & Zeng, K. & Werle, S. & Junga, R. & Sajdak, M., 2022. "Brewer's spent grain pyrolysis kinetics and evolved gas analysis for the sustainable phenolic compounds and fatty acids recovery potential," Renewable Energy, Elsevier, vol. 199(C), pages 157-168.
    5. Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
    6. Sun, Ce & Li, Wenlong & Chen, Xiaojian & Li, Changxin & Tan, Haiyan & Zhang, Yanhua, 2021. "Synergistic interactions for saving energy and promoting the co-pyrolysis of polylactic acid and wood flour," Renewable Energy, Elsevier, vol. 171(C), pages 254-265.
    7. Mostafa, Mohamed E. & El-Sayed, Saad A., 2025. "Thermal decomposition characteristics and kinetic analysis of biomasses and their blends: A comparative study using various models," Energy, Elsevier, vol. 330(C).
    8. Wądrzyk, Mariusz & Janus, Rafał & Lewandowski, Marek & Magdziarz, Aneta, 2021. "On mechanism of lignin decomposition – Investigation using microscale techniques: Py-GC-MS, Py-FT-IR and TGA," Renewable Energy, Elsevier, vol. 177(C), pages 942-952.
    9. Sobek, Szymon & Schmölzer, Stefan & Mumtaz, Hamza & Sajdak, Marcin & Muzyka, Roksana & Werle, Sebastian, 2025. "Kinetic study of the decommissioned wind turbine blade oxidative liquefaction based on differential scanning calorimetry," Energy, Elsevier, vol. 316(C).
    10. Bidhan Nath & Les Bowtell & Guangnan Chen & Elizabeth Graham & Thong Nguyen-Huy, 2024. "Pyrolytic Pathway of Wheat Straw Pellet by the Thermogravimetric Analyzer," Energies, MDPI, vol. 17(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    2. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    3. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
    4. Kaczor, Zuzanna & Buliński, Zbigniew & Sobek, Szymon & Werle, Sebastian, 2021. "Application of inverse methodology to estimate unknown parameters of the mathematical model of biomass solar pyrolysis," Renewable Energy, Elsevier, vol. 163(C), pages 858-869.
    5. Lin, Sen & Li, Liangzhong & Wei, Zebin & Liang, Jiayu & Lin, Ziting & Evrendilek, Fatih & He, Yao & Ninomiya, Yoshihiko & Xie, Wuming & Sun, Shuiyu & Liu, Jingyong, 2025. "CO2-induced co-pyrolysis of Pennisetum hydridum and waste tires: Multi-objective optimization of its synergies and pyrolytic oil, char and gas outputs," Energy, Elsevier, vol. 317(C).
    6. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Dudziak, M. & Werle, S. & Marszałek, A. & Sobek, S. & Magdziarz, A., 2022. "Comparative assessment of the biomass solar pyrolysis biochars combustion behavior and zinc Zn(II) adsorption," Energy, Elsevier, vol. 261(PB).
    8. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    9. Mong, Guo Ren & Chong, William Woei Fong & Nor, Siti Aminah Mohd & Ng, Jo-Han & Chong, Cheng Tung & Idris, Rubia & Too, Jingwei & Chiong, Meng Choung & Abas, Mohd Azman, 2021. "Pyrolysis of waste activated sludge from food manufacturing industry: Thermal degradation, kinetics and thermodynamics analysis," Energy, Elsevier, vol. 235(C).
    10. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    11. Sobek, Szymon & Werle, Sebastian, 2020. "Solar pyrolysis of waste biomass: Part 2 kinetic modeling and methodology of the determination of the kinetic parameters for solar pyrolysis of sewage sludge," Renewable Energy, Elsevier, vol. 153(C), pages 962-974.
    12. Chengzhe Shen & Yan Zhang & Gengsheng Liu & Dongxu Wang & Jinbao Zhang & Kai Yang & Xintong Wen & Quan Sun & Xuejun Dou & Yong Zhang & Jingwen Mao & Lei Deng, 2025. "Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal," Energies, MDPI, vol. 18(13), pages 1-17, June.
    13. Marzena Smol, 2020. "Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions," Resources, MDPI, vol. 9(8), pages 1-24, July.
    14. Mehmood, Muhammad Aamer & Khan, Aqib Zafar & Malik, Sana & Hui, Zhu & Wang, Ning & Huang, Xiao-Yan & Liang, Yu-Chen & Ali, Imtiaz & Alessa, Abdulrahman H. & Alsaigh, Ahmad A. & Asghar, Azeem & Liu, Ch, 2025. "Transforming sludge-containing urban wastewater to clean energy and biochemicals via an algae-based carbon-neutral pyrolytic pathway," Energy, Elsevier, vol. 331(C).
    15. Ferfari, Oussama & Belaadi, Ahmed & Bourchak, Mostefa & Ghernaout, Djamel & Ajaj, Rafic M. & Chai, Boon Xian, 2024. "Thermal decomposition of Syagrus romanzoffiana palm fibers: Thermodynamic and kinetic studies using the coats-redfern method," Renewable Energy, Elsevier, vol. 231(C).
    16. Fu, Wenming & Zhang, Yaning & Liu, Zhihong & Zhao, Wenke & Liu, Wei & Shuai, Yong, 2025. "Kinetic and thermodynamic insights into the catalytic pyrolysis of PP with Fe/Ni catalysts," Energy, Elsevier, vol. 330(C).
    17. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    18. Bryan Chiguano-Tapia & Elena Diaz & M. Angeles de la Rubia & Angel F. Mohedano, 2025. "Co-Hydrothermal Carbonization of Swine Manure and Soybean Hulls: Synergistic Effects on the Potential Use of Hydrochar as a Biofuel and Soil Improver," Sustainability, MDPI, vol. 17(11), pages 1-18, May.
    19. Nawaz, Ahmad & Kumar, Pradeep, 2022. "Elucidating the bioenergy potential of raw, hydrothermally carbonized and torrefied waste Arundo donax biomass in terms of physicochemical characterization, kinetic and thermodynamic parameters," Renewable Energy, Elsevier, vol. 187(C), pages 844-856.
    20. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:972-987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.