IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225018213.html
   My bibliography  Save this article

Energy and material recovery from bone waste: Steam gasification for biochar and syngas production in a circular economy framework

Author

Listed:
  • Mlonka-Mędrala, Agata
  • Sobek, Szymon
  • Wądrzyk, Mariusz
  • Werle, Sebastian
  • Ionescu, Gabriela
  • Mărculescu, Cosmin
  • Magdziarz, Aneta

Abstract

The food industry generates large amounts of bone waste, which presents both environmental and economic challenges. This study investigates the potential of bone waste as a feedstock for the production of energy carriers (syngas) and biochar through steam gasification, contributing to sustainable energy and circular economy strategies. The raw feedstock characterised by low carbon (<20 %) and high ash content (with large amounts of Ca and P) was subjected to steam gasification at 800 °C, 900 °C and 1000 °C to obtain the biochar developed at the surface. Biochar generated at 800 °C exhibited the highest surface area and micropore volume, making it ideal for catalysis or energy storage purposes. This biochar was then applied to the Py-GC-MS of biomass to investigate its catalytic properties. Kinetic analysis using isoconversional methods revealed that the addition of bone-derived biochar to biomass reduced the apparent activation energy in the primary devolatilization stage, facilitating a more efficient conversion process. These findings highlight the feasibility of using bone waste as a resource for the development of advanced biofuels and catalysts, aligning with the sustainability goals and waste valorisation principles.

Suggested Citation

  • Mlonka-Mędrala, Agata & Sobek, Szymon & Wądrzyk, Mariusz & Werle, Sebastian & Ionescu, Gabriela & Mărculescu, Cosmin & Magdziarz, Aneta, 2025. "Energy and material recovery from bone waste: Steam gasification for biochar and syngas production in a circular economy framework," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018213
    DOI: 10.1016/j.energy.2025.136179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.