IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v153y2018icp726-731.html
   My bibliography  Save this article

Effects of calcium carbonate on pyrolysis of sewage sludge

Author

Listed:
  • Kwon, Eilhann E.
  • Lee, Taewoo
  • Ok, Yong Sik
  • Tsang, Daniel C.W.
  • Park, Chanhyuk
  • Lee, Jechan

Abstract

This study demonstrates that calcium carbonate (CaCO3) allows not only enhancement of the production of CO as syngas, but also reduction of the content of polycyclic aromatic hydrocarbons (PAHs) in the pyrolytic products from sewage sludge. CO2 was formed by the decomposition of CaCO3 in pyrolysis. The CO2 derived from CaCO3 enhanced thermal cracking of volatile organic carbons (VOCs) generated during the pyrolysis of sewage sludge and provided an additional source of C and O, likely enhancing the production of CO at >650 °C. In addition, more solid product was converted into gaseous and liquid products by the addition of CaCO3 in the pyrolysis of sewage sludge. This work suggests that CaCO3 can be used as an inexpensive source of CO2 that increases thermal efficiency of the pyrolysis process and reduces the evolution of harmful chemical species such as PAHs during thermal treatment of the byproduct during processing at municipal and industrial wastewater treatment facilities (i.e., sewage sludge).

Suggested Citation

  • Kwon, Eilhann E. & Lee, Taewoo & Ok, Yong Sik & Tsang, Daniel C.W. & Park, Chanhyuk & Lee, Jechan, 2018. "Effects of calcium carbonate on pyrolysis of sewage sludge," Energy, Elsevier, vol. 153(C), pages 726-731.
  • Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:726-731
    DOI: 10.1016/j.energy.2018.04.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jieun & Kim, Ki-Hyun & Kwon, Eilhann E., 2016. "Enhanced thermal cracking of VOCs evolved from the thermal degradation of lignin using CO2," Energy, Elsevier, vol. 100(C), pages 51-57.
    2. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    3. Lee, Jechan & Yang, Xiao & Song, Hocheol & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Effects of carbon dioxide on pyrolysis of peat," Energy, Elsevier, vol. 120(C), pages 929-936.
    4. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    5. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Sungyup & Kim, Jung-Hun & Jeon, Young Jae & Park, Young-Kwon & Kwon, Eilhann E., 2020. "Synergistic use of carbon dioxide in catalytic pyrolysis of chlorella vulgaris over Ni and Co catalysts," Energy, Elsevier, vol. 211(C).
    2. Liu, Xianjie & Feng, Qian & Peng, Zhigang & Zheng, Yong & Liu, Huan, 2020. "Preparation and evaluation of micro-encapsulated thermal control materials for oil well cement slurry," Energy, Elsevier, vol. 208(C).
    3. Vladimír Frišták & Martin Pipíška & Dominika Koperová & Reinhard Jagerhofer & Gerhard Soja & Stephen M. Bell, 2022. "Utilization of Sewage Sludge-Derived Pyrogenic Material as a Promising Soil Amendment," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
    4. Xing, Xinxin & Zhao, Hongyu & Zhou, Lili & Wang, Yangang & Chen, Haijun & Gao, Ying & Wang, Yinfeng & Zhu, Yuezhao, 2022. "Pyrolysis kinetics, thermodynamics of PTA sludge and product characterization of cyclic in-situ catalytic pyrolysis by using recycled char as a catalyst," Energy, Elsevier, vol. 251(C).
    5. Kim, Soosan & Byun, Jaewon & Park, Hoyoung & Lee, Nahyeon & Han, Jeehoon & Lee, Jechan, 2022. "Energy-efficient thermal waste treatment process with no CO2 emission: A case study of waste tea bag," Energy, Elsevier, vol. 241(C).
    6. Radosław Slezak & Liliana Krzystek & Piotr Dziugan & Stanisław Ledakowicz, 2020. "Co-Pyrolysis of Beet Pulp and Defecation Lime in TG-MS System," Energies, MDPI, vol. 13(9), pages 1-13, May.
    7. Lee, Taewoo & Jung, Sungyup & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Catalytic pyrolysis of pine bark over Ni/SiO2 in a CO2 atmosphere," Energy, Elsevier, vol. 220(C).
    8. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Liu, Yang & Ran, Chunmei & Siddiqui, Azka R. & Siyal, Asif Ali & Song, Yongmeng & Dai, Jianjun & Chtaeva, Polina & Fu, Jie & Ao, Wenya & Deng, Zeyu & Jiang, Zhihui & Zhang, Tianhao, 2020. "Characterization and analysis of sludge char prepared from bench-scale fluidized bed pyrolysis of sewage sludge," Energy, Elsevier, vol. 200(C).
    10. Park, Chanyeong & Choi, Heeyoung & Andrew Lin, Kun-Yi & Kwon, Eilhann E. & Lee, Jechan, 2021. "COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste," Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jechan & Choi, Dongho & Kwon, Eilhann E. & Ok, Yong Sik, 2017. "Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2," Energy, Elsevier, vol. 137(C), pages 412-418.
    2. Lee, Jechan & Oh, Jeong-Ik & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2," Energy, Elsevier, vol. 137(C), pages 510-517.
    3. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    4. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    5. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    7. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    8. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    9. Seongmin Kang & Changsang Cho & Ki-Hyun Kim & Eui-chan Jeon, 2018. "Fossil Carbon Fraction and Measuring Cycle for Sewage Sludge Waste Incineration," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    10. David Bannon & Mirka Deza & Masoud Masoumi & Bahareh Estejab, 2023. "Assessment of Irregular Biomass Particles Fluidization in Bubbling Fluidized Beds," Energies, MDPI, vol. 16(4), pages 1-20, February.
    11. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    12. Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
    13. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    15. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    16. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    17. Amirhamzeh Farajollahi & Seyed Amirhossein Hejazirad & Mohsen Rostami, 2022. "Thermodynamic modeling of a power and hydrogen generation system driven by municipal solid waste gasification," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5887-5916, April.
    18. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    19. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    20. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:153:y:2018:i:c:p:726-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.