IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp918-930.html
   My bibliography  Save this article

From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed

Author

Listed:
  • Masnadi, Mohammad S.
  • Grace, John R.
  • Bi, Xiaotao T.
  • Lim, C. Jim
  • Ellis, Naoko
  • Li, Yong Hua
  • Watkinson, A. Paul

Abstract

Recent environmental sharp curbs on fossil fuel energy systems such as coal power plants due to their greenhouse gas emissions have compelled industries to include renewable fuels. Biomass/coal co-gasification could provide a transition from energy production based on fossil fuels to renewables. A low-ash coal and switchgrass rich in potassium were selected on the basis of previous thermogravimetric studies to steam co-gasify 50:50 wt% coal:switchgrass mixtures in a pilot scale bubbling fluidized bed reactor with silica sand as the bed material at ∼800 and 860 °C and 1 atm. With the switchgrass added to coal, the hydrogen and cold gas efficiencies, gas yield and HHV of the product gas were enhanced remarkably relative to single-fuel gasification. The product gas tar yield also decreased considerably due to decomposition of tar catalyzed by switchgrass alkali and alkaline earth metals. Switchgrass ash therefore can act as inexpensive natural catalysts for steam gasification and assist in operating at lower temperatures without being penalized by an increase in product tar yield. An equilibrium model over-predicted hydrogen and under-predicted methane concentrations. However, an empirically kinetically-modified model was able to predict the product gas compositions accurately.

Suggested Citation

  • Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:918-930
    DOI: 10.1016/j.renene.2015.05.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115300070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.05.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko, 2015. "From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels," Applied Energy, Elsevier, vol. 140(C), pages 196-209.
    2. Aime Hilaire Tchapda & Sarma V. Pisupati, 2014. "A Review of Thermal Co-Conversion of Coal and Biomass/Waste," Energies, MDPI, vol. 7(3), pages 1-51, February.
    3. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "Single-fuel steam gasification of switchgrass and coal in a bubbling fluidized bed: A comprehensive parametric reference for co-gasification study," Energy, Elsevier, vol. 80(C), pages 133-147.
    4. Ajay Kumar & David D. Jones & Milford A. Hanna, 2009. "Thermochemical Biomass Gasification: A Review of the Current Status of the Technology," Energies, MDPI, vol. 2(3), pages 1-26, July.
    5. Jin, Gong & Iwaki, Hiroyuki & Arai, Norio & Kitagawa, Kuniyuki, 2005. "Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts," Energy, Elsevier, vol. 30(7), pages 1192-1203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Ellis, Naoko & Lim, C. Jim & Butler, James W., 2015. "Biomass/coal steam co-gasification integrated with in-situ CO2 capture," Energy, Elsevier, vol. 83(C), pages 326-336.
    2. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    3. Mahapatro, Abinash & Mahanta, Pinakeswar, 2020. "Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed," Renewable Energy, Elsevier, vol. 150(C), pages 1151-1159.
    4. Du, Shaohua & Wang, Jiahao & Yu, Yaxiong & Zhou, Qiang, 2023. "Coarse-grained CFD-DEM simulation of coal and biomass co-gasification process in a fluidized bed reactor: Effects of particle size distribution and operating pressure," Renewable Energy, Elsevier, vol. 202(C), pages 483-498.
    5. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    6. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2023. "Gasification and Co-gasification of paper-rich, high-ash refuse-derived fuel in downdraft gasifier," Energy, Elsevier, vol. 263(PA).
    7. Wang, Shuxiao & Shan, Rui & Lu, Tao & Zhang, Yuyuan & Yuan, Haoran & Chen, Yong, 2020. "Pyrolysis char derived from waste peat for catalytic reforming of tar model compound," Applied Energy, Elsevier, vol. 263(C).
    8. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    9. Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
    10. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    13. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    14. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    15. Laougé, Zakari Boubacar & Merdun, Hasan, 2021. "Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion," Energy, Elsevier, vol. 231(C).
    16. Saebea, Dang & Magistri, Loredana & Massardo, Aristide & Arpornwichanop, Amornchai, 2017. "Cycle analysis of solid oxide fuel cell-gas turbine hybrid systems integrated ethanol steam reformer: Energy management," Energy, Elsevier, vol. 127(C), pages 743-755.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "Single-fuel steam gasification of switchgrass and coal in a bubbling fluidized bed: A comprehensive parametric reference for co-gasification study," Energy, Elsevier, vol. 80(C), pages 133-147.
    2. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    3. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    4. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    5. Widjaya, Elita R. & Chen, Guangnan & Bowtell, Les & Hills, Catherine, 2018. "Gasification of non-woody biomass: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 184-193.
    6. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    7. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Ellis, Naoko & Lim, C. Jim & Butler, James W., 2015. "Biomass/coal steam co-gasification integrated with in-situ CO2 capture," Energy, Elsevier, vol. 83(C), pages 326-336.
    8. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2019. "Environmental Assessment of Municipal Solid Waste by Two-Stage Plasma Gasification," Energies, MDPI, vol. 12(1), pages 1-16, January.
    9. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    10. David Bannon & Mirka Deza & Masoud Masoumi & Bahareh Estejab, 2023. "Assessment of Irregular Biomass Particles Fluidization in Bubbling Fluidized Beds," Energies, MDPI, vol. 16(4), pages 1-20, February.
    11. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    13. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    14. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    15. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    16. Carvalho, Lara & Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Lundgren, Joakim & Hedlund, Jonas & Grahn, Mattias & Öhrman, Olov G.W. & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and a novel syngas cleaning. Part 2: Techno-economic assessment," Energy, Elsevier, vol. 165(PB), pages 471-482.
    17. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    18. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    19. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    20. Rawan Hakawati & Beatrice Smyth & Helen Daly & Geoffrey McCullough & David Rooney, 2019. "Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric Pressure?," Energies, MDPI, vol. 12(6), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:918-930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.