Solar pyrolysis of waste biomass: Part 2 kinetic modeling and methodology of the determination of the kinetic parameters for solar pyrolysis of sewage sludge
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.02.061
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Sobek, Szymon & Werle, Sebastian, 2019. "Solar pyrolysis of waste biomass: Part 1 reactor design," Renewable Energy, Elsevier, vol. 143(C), pages 1939-1948.
- Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
- Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
- Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2015. "Solar pyrolysis of beech wood: Effects of pyrolysis parameters on the product distribution and gas product composition," Energy, Elsevier, vol. 93(P2), pages 1648-1657.
- Werle, Sebastian & Wilk, Ryszard K., 2010. "A review of methods for the thermal utilization of sewage sludge: The Polish perspective," Renewable Energy, Elsevier, vol. 35(9), pages 1914-1919.
- Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sobek, S. & Zeng, K. & Werle, S. & Junga, R. & Sajdak, M., 2022. "Brewer's spent grain pyrolysis kinetics and evolved gas analysis for the sustainable phenolic compounds and fatty acids recovery potential," Renewable Energy, Elsevier, vol. 199(C), pages 157-168.
- Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
- Marzena Smol, 2020. "Inventory of Wastes Generated in Polish Sewage Sludge Incineration Plants and Their Possible Circular Management Directions," Resources, MDPI, vol. 9(8), pages 1-24, July.
- Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Mong, Guo Ren & Chong, William Woei Fong & Nor, Siti Aminah Mohd & Ng, Jo-Han & Chong, Cheng Tung & Idris, Rubia & Too, Jingwei & Chiong, Meng Choung & Abas, Mohd Azman, 2021. "Pyrolysis of waste activated sludge from food manufacturing industry: Thermal degradation, kinetics and thermodynamics analysis," Energy, Elsevier, vol. 235(C).
- Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
- Sobek, Szymon & Werle, Sebastian, 2020. "Isoconversional determination of the apparent reaction models governing pyrolysis of wood, straw and sewage sludge, with an approach to rate modelling," Renewable Energy, Elsevier, vol. 161(C), pages 972-987.
- Yang, Xiaoxia & Zhong, Dian & Zeng, Kuo & Li, Jun & Chen, Xin & Yang, Haiping & Chen, Hanping, 2025. "Performance analysis of a novel biomass thermochemical conversion cascade utilization system driven by concentrated solar energy," Energy, Elsevier, vol. 323(C).
- Dudziak, M. & Werle, S. & Marszałek, A. & Sobek, S. & Magdziarz, A., 2022. "Comparative assessment of the biomass solar pyrolysis biochars combustion behavior and zinc Zn(II) adsorption," Energy, Elsevier, vol. 261(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
- Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Yin, Yanshan & Tu, Jun & Wu, Zhiliang & Wang, Tao & Rahman, Md. Maksudur & Shakir, Mohammad & Qing, Mengxia & Chen, Zhijie & Ni, Bing-Jie & Xuan, Yanni & Peng, Zeping & Liu, Liang, 2025. "Thermal characteristics, kinetics mechanism, and sulfur retention of waste tires and goat manure Co-combustion," Energy, Elsevier, vol. 325(C).
- Patel, Savankumar & Kundu, Sazal & Halder, Pobitra & Rickards, Lauren & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Madapusi, Srinivasan & Shah, Kalpit, 2019. "Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides," Renewable Energy, Elsevier, vol. 141(C), pages 707-716.
- Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
- Chen, Renjie & Yuan, Shijie & Wang, Xiankai & Dai, Xiaohu & Guo, Yali & Li, Chong & Wu, Haibin & Dong, Bin, 2023. "Mechanistic insight into the effect of hydrothermal treatment of sewage sludge on subsequent pyrolysis: Evolution of volatile and their interaction with pyrolysis kinetic and products compositions," Energy, Elsevier, vol. 266(C).
- Sobek, Szymon & Werle, Sebastian, 2020. "Isoconversional determination of the apparent reaction models governing pyrolysis of wood, straw and sewage sludge, with an approach to rate modelling," Renewable Energy, Elsevier, vol. 161(C), pages 972-987.
- Chengzhe Shen & Yan Zhang & Gengsheng Liu & Dongxu Wang & Jinbao Zhang & Kai Yang & Xintong Wen & Quan Sun & Xuejun Dou & Yong Zhang & Jingwen Mao & Lei Deng, 2025. "Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal," Energies, MDPI, vol. 18(13), pages 1-17, June.
- Katarzyna Zabielska-Adamska, 2019. "Sewage Sludge Bottom Ash Characteristics and Potential Application in Road Embankment," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
- Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
- Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
- Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
- Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
- Mehmood, Muhammad Aamer & Khan, Aqib Zafar & Malik, Sana & Hui, Zhu & Wang, Ning & Huang, Xiao-Yan & Liang, Yu-Chen & Ali, Imtiaz & Alessa, Abdulrahman H. & Alsaigh, Ahmad A. & Asghar, Azeem & Liu, Ch, 2025. "Transforming sludge-containing urban wastewater to clean energy and biochemicals via an algae-based carbon-neutral pyrolytic pathway," Energy, Elsevier, vol. 331(C).
- Ferfari, Oussama & Belaadi, Ahmed & Bourchak, Mostefa & Ghernaout, Djamel & Ajaj, Rafic M. & Chai, Boon Xian, 2024. "Thermal decomposition of Syagrus romanzoffiana palm fibers: Thermodynamic and kinetic studies using the coats-redfern method," Renewable Energy, Elsevier, vol. 231(C).
- Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
- Bryan Chiguano-Tapia & Elena Diaz & M. Angeles de la Rubia & Angel F. Mohedano, 2025. "Co-Hydrothermal Carbonization of Swine Manure and Soybean Hulls: Synergistic Effects on the Potential Use of Hydrochar as a Biofuel and Soil Improver," Sustainability, MDPI, vol. 17(11), pages 1-18, May.
- Nawaz, Ahmad & Kumar, Pradeep, 2022. "Elucidating the bioenergy potential of raw, hydrothermally carbonized and torrefied waste Arundo donax biomass in terms of physicochemical characterization, kinetic and thermodynamic parameters," Renewable Energy, Elsevier, vol. 187(C), pages 844-856.
- Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:962-974. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp962-974.html