IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313979.html
   My bibliography  Save this article

Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses

Author

Listed:
  • Zhang, Zhiqing
  • Duan, Hanqi
  • Zhang, Youjun
  • Guo, Xiaojuan
  • Yu, Xi
  • Zhang, Xingguang
  • Rahman, Md. Maksudur
  • Cai, Junmeng

Abstract

The kinetic compensation effect between the activation energy and the pre-exponential factor has extensively existed in the thermochemical conversion processes of lignocellulosic biomass. The research on the kinetic compensation effect in lignocellulosic biomass torrefaction has been insufficient yet. The torrefaction of the pinewood sample was experimentally investigated by thermogravimetric analysis (TGA) at five isothermal temperatures of 220, 250, 265, 280 and 295 °C. The reaction order model was used to analyze the isothermal torrefaction kinetics of lignocellulosic biomass, and the results showed that many sets of activation energy and pre-exponential factor could describe the experimental data at each temperature equally well and they excellently satisfied the kinetic compensation effect relationship. The linear regression lines of the kinetic compensation effect points at different temperatures intersected at one point, whose values corresponded to the obtained optimal kinetic parameters. A kinetic-compensation-effect-based method was developed and verified to determine the kinetic parameters of isothermal biomass torrefaction. Based on the optimal kinetic parameters, the thermodynamic parameters (including Gibbs free energy, enthalpy, and entropy) of biomass torrefaction processes at various temperatures were calculated and analyzed.

Suggested Citation

  • Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313979
    DOI: 10.1016/j.energy.2020.118290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    2. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    3. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    4. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    5. Sinha, Dhiraj, 2014. "Entropy changes in a thermodynamic process under potential gradients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 676-683.
    6. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    7. Clausen, Lasse R., 2014. "Integrated torrefaction vs. external torrefaction – A thermodynamic analysis for the case of a thermochemical biorefinery," Energy, Elsevier, vol. 77(C), pages 597-607.
    8. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    9. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    10. Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onsree, Thossaporn & Tippayawong, Nakorn & Phithakkitnukoon, Santi & Lauterbach, Jochen, 2022. "Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass," Energy, Elsevier, vol. 249(C).
    2. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    3. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    4. Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).
    5. Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    6. Sun Yong Park & Kwang Cheol Oh & Seok Jun Kim & La Hoon Cho & Young Kwang Jeon & DaeHyun Kim, 2023. "Development of a Biomass Component Prediction Model Based on Elemental and Proximate Analyses," Energies, MDPI, vol. 16(14), pages 1-17, July.
    7. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    8. Onsree, Thossaporn & Tippayawong, Nakorn, 2021. "Machine learning application to predict yields of solid products from biomass torrefaction," Renewable Energy, Elsevier, vol. 167(C), pages 425-432.
    9. Ivanovski, Maja & Goricanec, Darko & Krope, Jurij & Urbancl, Danijela, 2022. "Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production," Energy, Elsevier, vol. 240(C).
    10. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    11. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    3. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    4. Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
    5. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    6. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    7. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    8. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    9. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    10. Cheng, Wei & Shao, Jing'ai & Zhu, Youjian & Zhang, Wennan & Jiang, Hao & Hu, Junhao & Zhang, Xiong & Yang, Haiping & Chen, Hanping, 2022. "Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 189(C), pages 39-51.
    11. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    12. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Lin, Yi-Li & Zheng, Nai-Yun & Lin, Ching-Shi, 2021. "Repurposing Washingtonia filifera petiole and Sterculia foetida follicle waste biomass for renewable energy through torrefaction," Energy, Elsevier, vol. 223(C).
    14. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    15. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    16. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    17. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    18. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    19. Chen, Renjie & Yuan, Shijie & Wang, Xiankai & Dai, Xiaohu & Guo, Yali & Li, Chong & Wu, Haibin & Dong, Bin, 2023. "Mechanistic insight into the effect of hydrothermal treatment of sewage sludge on subsequent pyrolysis: Evolution of volatile and their interaction with pyrolysis kinetic and products compositions," Energy, Elsevier, vol. 266(C).
    20. Soares Dias, Ana Paula & Rego, Filipe & Fonseca, Frederico & Casquilho, Miguel & Rosa, Fátima & Rodrigues, Abel, 2019. "Catalyzed pyrolysis of SRC poplar biomass. Alkaline carbonates and zeolites catalysts," Energy, Elsevier, vol. 183(C), pages 1114-1122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.