IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225017335.html
   My bibliography  Save this article

Combined isoconversional analysis and modified empirical kinetic mechanism function for characterizing the kinetics of tobacco waste pyrolysis

Author

Listed:
  • Wang, Yixuan
  • Jia, Xinyue
  • Zhang, Zhan
  • Li, Chong
  • Liu, Wenzhao
  • Han, Lu
  • Zhao, Xuebin
  • Fu, Lili
  • Zhou, Jian
  • Jiang, Mingshen
  • Cai, Junmeng
  • Li, Bin

Abstract

Isoconversional kinetic analysis of a chemical reaction can effectively evaluate the activation energies, but it cannot directly determine the kinetic mechanism function (KMF). This study focuses on the complementary use of the Friedman isoconversional method and modified empirical KMF to investigate the kinetics of tobacco waste pyrolysis. The systematical analysis of the modified empirical KMF shows its abundant flexibility in describing various complex kinetics, as evidenced by diverse shape characteristics of kinetic curves. The kinetic results of tobacco waste pyrolysis were obtained by the integrated approach of the Friedman isoconversional method and modified empirical KMF: activation energies ranging from 176.3 to 352.5 kJ·mol−1 in the α range between 0.05 and 0.95 and the KMF for tobacco waste pyrolysis being f(α) = α−1.8931·(1–1.0206·α)5.9108. The combination of the Friedman isoconversional method with the modified empirical KMF serves as an effective method for conducting the comprehensive kinetic analysis of lignocellulosic biomass pyrolysis. The results can be used to establish the comprehensive and accurate chemical model, which is helpful for accurate numerical simulation of the biomass pyrolysis process, enabling the optimization of pyrolysis reactor configurations and operation conditions based on the numerical simulation results, thereby facilitating the industrial application of tobacco waste conversion.

Suggested Citation

  • Wang, Yixuan & Jia, Xinyue & Zhang, Zhan & Li, Chong & Liu, Wenzhao & Han, Lu & Zhao, Xuebin & Fu, Lili & Zhou, Jian & Jiang, Mingshen & Cai, Junmeng & Li, Bin, 2025. "Combined isoconversional analysis and modified empirical kinetic mechanism function for characterizing the kinetics of tobacco waste pyrolysis," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017335
    DOI: 10.1016/j.energy.2025.136091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    2. Bai, Jing & Huang, Guilin & Qiu, Chenxu & Shang, Xutao & Sun, Zihui & Hu, Junhao & Chang, Chun, 2024. "Preparation of low-nitrogen bio-oil from co-pyrolysis of waste tobacco stem and corn stalk: Product characteristics and denitrogenation mechanism," Energy, Elsevier, vol. 301(C).
    3. Kim, Heeyoon & Yu, Seunghan & Kim, Minsu & Ryu, Changkook, 2022. "Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model," Energy, Elsevier, vol. 254(PC).
    4. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    5. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    6. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    7. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    8. Celikoglu, Ahmet & Tirnakli, Ugur, 2018. "Skewness and kurtosis analysis for non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 325-334.
    9. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    10. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    2. Wang, Jiong & Mingshen, Jiang & Zhang, Pin & Liu, Qunsheng & Zhang, Shuqing & Wang, Ke & Li, Chong & Cai, Junmeng, 2024. "Elucidating kinetic mechanisms of lignin and biomass pyrolysis by distributed activation energy model with genetic algorithm," Energy, Elsevier, vol. 312(C).
    3. Zhang, Pin & Li, Chong & Xu, Dong & Yellezuome, Dominic & Wang, Jiong & Cai, Junmeng, 2023. "Insight into kinetics and thermodynamics of distillers’ dried grains with solubles (DDGS) combustion using an approach simultaneously determining frequency factor and reaction model," Renewable Energy, Elsevier, vol. 219(P2).
    4. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    5. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    6. Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
    7. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    8. Yang, Yantao & Jiang, Mingshen & Song, Lei & Shen, Yilin & Lei, Tingzhou & Cai, Junmeng, 2024. "Systematical analysis and application of distributed activation energy model (DAEM) with Weibull distribution for pyrolysis kinetics of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 237(PA).
    9. Chai, Meiyun & Xie, Li & Yu, Xi & Zhang, Xingguang & Yang, Yang & Rahman, Md. Maksudur & Blanco, Paula H. & Liu, Ronghou & Bridgwater, Anthony V. & Cai, Junmeng, 2021. "Poplar wood torrefaction: Kinetics, thermochemistry and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    11. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    12. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    14. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    15. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    16. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).
    17. Aboudaoud, Souad & El Hallaoui, Zhor & Abderafi, Souad, 2025. "Specific heat measurements and thermal behaviour analysis of argan residues for pyrolysis applications," Renewable Energy, Elsevier, vol. 243(C).
    18. Kumar, Rakesh & Dubey, Pratik & Mondal, Monoj Kumar, 2024. "Analysis of kinetics, mechanism, thermodynamic properties and product distribution for pyrolysis of Ni–Fe impregnated coconut husk," Renewable Energy, Elsevier, vol. 222(C).
    19. Chen, Fanbao & Kong, Depeng & Zhu, Guoqing & Sharma, Rajnish N., 2025. "Methods for predicting and implementing continuous pyrolysis rate and heat release rate of Finnish pine," Energy, Elsevier, vol. 319(C).
    20. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.