IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp158-168.html
   My bibliography  Save this article

Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion

Author

Listed:
  • Yang, Y.
  • Heaven, S.
  • Venetsaneas, N.
  • Banks, C.J.
  • Bridgwater, A.V.

Abstract

A comprehensive study of the energy yield from slow pyrolysis of the organic fraction of municipal solid waste (OFMSW) and energy recovery from the aqueous liquid product by anaerobic digestion has been carried out. In this paper, the results of the liquid pyrolysis product characterisation are presented, with toxicity and methane potential assessments of the aqueous liquid product. The OFMSW feedstock was obtained from a UK waste treatment plant. Shredded samples dried to different moisture contents (12.7–45.8%) were processed in a 300 g per hour auger screw pyrolysis reactor at temperatures from 450 to 850 °C. Sixteen pyrolysis runs were performed, with process mass balance closures above 90% obtained (wet feed basis). Pyrolysis liquids showed clear phase separation under gravity. With increasing processing temperature, the liquid yield (both organic and aqueous fraction) reduced but the gas yield increased. An investigation into the product energy distribution indicated that processing temperature had a strong effect on the product energy distribution, while the effect of feedstock moisture was relatively small. Batch anaerobic testing of the aqueous fraction showed that toxicity increased with pyrolysis processing temperature and decreased with feedstock moisture content. Statistical analysis confirmed that the pyrolysis processing temperature was the dominant factor affecting the toxicity of the aqueous product. Careful acclimatisation of the microbial consortium to the applied substrate and loading is likely to be necessary for improved digestion of the aqueous fraction.

Suggested Citation

  • Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:158-168
    DOI: 10.1016/j.apenergy.2018.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Y. & Brammer, J.G. & Wright, D.G. & Scott, J.A. & Serrano, C. & Bridgwater, A.V., 2017. "Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact," Applied Energy, Elsevier, vol. 191(C), pages 639-652.
    2. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    3. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    4. Corton, J. & Donnison, I.S. & Patel, M. & Bühle, L. & Hodgson, E. & Wachendorf, M. & Bridgwater, A. & Allison, G. & Fraser, M.D., 2016. "Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes," Applied Energy, Elsevier, vol. 177(C), pages 852-862.
    5. Elsamadony, M. & Tawfik, A. & Suzuki, M., 2015. "Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion," Applied Energy, Elsevier, vol. 149(C), pages 272-282.
    6. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    7. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    8. Monlau, F. & Francavilla, M. & Sambusiti, C. & Antoniou, N. & Solhy, A. & Libutti, A. & Zabaniotou, A. & Barakat, A. & Monteleone, M., 2016. "Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment," Applied Energy, Elsevier, vol. 169(C), pages 652-662.
    9. Görling, Martin & Larsson, Mårten & Alvfors, Per, 2013. "Bio-methane via fast pyrolysis of biomass," Applied Energy, Elsevier, vol. 112(C), pages 440-447.
    10. Wang, Na & Chen, Dezhen & Arena, Umberto & He, Pinjing, 2017. "Hot char-catalytic reforming of volatiles from MSW pyrolysis," Applied Energy, Elsevier, vol. 191(C), pages 111-124.
    11. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Donald Ukpanyang & Julio Terrados-Cepeda, 2022. "Decarbonizing Vehicle Transportation with Hydrogen from Biomass Gasification: An Assessment in the Nigerian Urban Environment," Energies, MDPI, vol. 15(9), pages 1-23, April.
    3. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    4. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    5. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    6. Hachem-Vermette, Caroline & Grewal, Kuljeet Singh, 2019. "Investigation of the impact of residential mixture on energy and environmental performance of mixed use neighborhoods," Applied Energy, Elsevier, vol. 241(C), pages 362-379.
    7. Yue Zhang & Sigrid Kusch-Brandt & Shiyan Gu & Sonia Heaven, 2019. "Particle Size Distribution in Municipal Solid Waste Pre-Treated for Bioprocessing," Resources, MDPI, vol. 8(4), pages 1-24, October.
    8. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    9. Yu, Xiunan & Zhang, Congguang & Qiu, Ling & Yao, Yiqing & Sun, Guotao & Guo, Xiaohui, 2020. "Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2484-2493.
    10. Petar Sabev Varbanov & Hon Huin Chin & Alexandra-Elena Plesu Popescu & Stanislav Boldyryev, 2020. "Thermodynamics-Based Process Sustainability Evaluation," Energies, MDPI, vol. 13(9), pages 1-28, April.
    11. Włodzimierz Szczepaniak & Monika Zabłocka-Malicka & Rafał Wysokiński & Piotr Rutkowski, 2020. "Intensity of the Process Gas Emission from the Thermal Treatment of the 60–340 mm MSW Fraction under Steam," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    12. Torri, Cristian & Pambieri, Giampiero & Gualandi, Chiara & Piraccini, Maurizio & Rombolà, Alessandro G. & Fabbri, Daniele, 2020. "Evaluation of the potential performance of hyphenated pyrolysis-anaerobic digestion (Py-AD) process for carbon negative fuels from woody biomass," Renewable Energy, Elsevier, vol. 148(C), pages 1190-1199.
    13. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Asya İşçen & Kerem Öznacar & K. M. Murat Tunç & M. Erdem Günay, 2023. "Exploring the Critical Factors of Biomass Pyrolysis for Sustainable Fuel Production by Machine Learning," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    15. Amna Qaisar & Lorenzo Bartolucci & Rocco Cancelliere & Nishanth G. Chemmangattuvalappil & Pietro Mele & Laura Micheli & Elisa Paialunga, 2024. "Selective Phenolics Recovery from Aqueous Residues of Pyrolysis Oil through Computationally Designed Green Solvent," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    16. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Yu, Xiunan & Zhang, Congguang & Qiu, Ling & Yao, Yiqing & Sun, Guotao & Guo, Xiaohui, 2020. "Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2484-2493.
    3. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    4. Wang, Shule & Yang, Hanmin & Shi, Ziyi & Zaini, Ilman Nuran & Wen, Yuming & Jiang, Jianchun & Jönsson, Pär Göran & Yang, Weihong, 2022. "Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept," Energy, Elsevier, vol. 252(C).
    5. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
    7. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    10. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    11. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    12. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    13. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    14. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    15. Corton, J. & Donnison, I.S. & Patel, M. & Bühle, L. & Hodgson, E. & Wachendorf, M. & Bridgwater, A. & Allison, G. & Fraser, M.D., 2016. "Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes," Applied Energy, Elsevier, vol. 177(C), pages 852-862.
    16. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    17. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    18. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    19. Kumar, Rakesh & Dubey, Pratik & Mondal, Monoj Kumar, 2024. "Analysis of kinetics, mechanism, thermodynamic properties and product distribution for pyrolysis of Ni–Fe impregnated coconut husk," Renewable Energy, Elsevier, vol. 222(C).
    20. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:158-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.