IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4532-d1733501.html
   My bibliography  Save this article

Analysis of Thermal and Catalytic Pyrolysis Processes in Belém: A Socioeconomic Perspective

Author

Listed:
  • Fernanda Paula da Costa Assunção

    (Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Jéssica Cristina Conte da Silva

    (Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Fernando Felipe Soares Almeida

    (Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Marcelo Costa Santos

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Simone Patrícia Aranha da Paz

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil)

  • Douglas Alberto Rocha de Castro

    (Department of Chemical Engineering, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos n° 1200—Coroado I, Manaus 69067-005, Brazil)

  • Jorge Fernando Hungria Ferreira

    (Center for Natural Sciences and Technology, Universidade do Estado do Pará, Av. Bom Jesus, s/n°, Altamira 68377-078, Brazil)

  • Neyson Martins Mendonça

    (Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

  • Mel Safira Cruz do Nascimento

    (Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

  • José Almir Rodrigues Pereira

    (Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

  • Aline Christian Pimentel Almeida

    (Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

  • Sergio Duvoisin Junior

    (Faculty of Chemical Engineering, Universidade do Estado do Amazonas-UEA, Avenida Darcy Vargas N°1200, Manaus 69050-020, Brazil)

  • Luiz Eduardo Pizarro Borges

    (Laboratory of Catalyst Preparation and Catalytic Cracking, Section of Chemical Engineering, Instituto Militar de Engenharia-IME, Praça General Tibúrcio N°. 80, Rio de Janeiro 22290-270, Brazil)

  • Nélio Teixeira Machado

    (Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
    Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
    Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil)

Abstract

This study aims to assess the by-products generated through the thermal and catalytic pyrolysis of the organic matter and paper fractions of municipal solid waste (MSW) in different socioeconomic regions, through the yields of reaction products (bio-oil, biochar, H 2 O, and gas), acid value and chemical composition of bio-oils, and characterization of biochar, on a laboratory scale. The organic matter and paper segregated from the gravimetric composition of the total waste sample were subjected to drying, crushing, and sieving pre-treatment. The experiments were carried out at 450 °C and 1.0 atmosphere, and at 400 °C and 475 °C and 1.0 atmosphere, using a basic catalyst, Ca(OH) 2 , at 10.0% by mass, in discontinuous mode. The bio-oil was characterized by acidity value and the chemical functions present in the bio-oil identified by FT-IR, NMR, and composition by GC-MS. The biochar was characterized by SEM/EDS and XRD. The bio-oil yield increased with the addition of the catalyst and the pyrolysis temperature. For catalytic pyrolysis, bio-char and gas yields increased slightly with the Ca(OH) 2 content, while bio-oil and H 2 O phases remained constant. The GC-MS of the liquid reaction products identified the presence of hydrocarbons and oxygenates, as well as nitrogen-containing compounds, including amides and amines. The acidity of the bio-oil decreased with the addition of the basic catalyst in the process. The concentration of hydrocarbons in the bio-oil appeared with the addition of the catalyst in the catalytic pyrolysis process as the catalytic deoxygenation of fatty acid molecules occurred, through decarboxylation/decarbonylation, producing aliphatic and aromatic hydrocarbons, introducing the basic catalyst into the thermal process.

Suggested Citation

  • Fernanda Paula da Costa Assunção & Jéssica Cristina Conte da Silva & Fernando Felipe Soares Almeida & Marcelo Costa Santos & Simone Patrícia Aranha da Paz & Douglas Alberto Rocha de Castro & Jorge Fer, 2025. "Analysis of Thermal and Catalytic Pyrolysis Processes in Belém: A Socioeconomic Perspective," Energies, MDPI, vol. 18(17), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4532-:d:1733501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huseyin Kurtulus Ozcan & Senem Yazici Guvenc & Lokman Guvenc & Goksel Demir, 2016. "Municipal Solid Waste Characterization According to Different Income Levels: A Case Study," Sustainability, MDPI, vol. 8(10), pages 1-11, October.
    2. Samina Alam & Kazi Sajedur Rahman & Md. Rokonuzzaman & P. Abdul Salam & Md. Sazal Miah & Narottam Das & Shahariar Chowdhury & Sittiporn Channumsin & Suwat Sreesawet & Manun Channumsin, 2022. "Selection of Waste to Energy Technologies for Municipal Solid Waste Management—Towards Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    4. Diogo Oliveira Pereira & Fernanda Paula da Costa Assunção & Jéssica Cristina Conte da Silva & Jorge Fernando Hungria Ferreira & Raise Brenda Pinheiro Ferreira & Ádila Lima Lola & Ísis Costa Pereira do, 2023. "Prediction of Leachate Characteristics via an Analysis of the Solubilized Extract of the Organic Fraction of Domestic Solid Waste from the Municipality of Belém, PA," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    5. Gabriel Pereira Colares da Silva & Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jorge Fernando Hungria Ferreira & Josiane Coutinho Mathews & Débora Prissila Reis Sandim & Higor Ribeiro , 2024. "Analysis of the Gravimetric Composition of Urban Solid Waste from the Municipality of Belém/PA," Sustainability, MDPI, vol. 16(13), pages 1-17, June.
    6. Nurul Islam, Mohammad & Nurul Islam, Mohammad & Rafiqul Alam Beg, Mohammad & Rofiqul Islam, Mohammad, 2005. "Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization," Renewable Energy, Elsevier, vol. 30(3), pages 413-420.
    7. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    3. Yue Zhang & Sigrid Kusch-Brandt & Shiyan Gu & Sonia Heaven, 2019. "Particle Size Distribution in Municipal Solid Waste Pre-Treated for Bioprocessing," Resources, MDPI, vol. 8(4), pages 1-24, October.
    4. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    5. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    6. Paul Taboada-González & Quetzalli Aguilar-Virgen & Liliana Márquez-Benavides, 2017. "Recyclables Valorisation as the Best Strategy for Achieving Landfill CO 2 e Emissions Abatement from Domestic Waste: Game Theory," Sustainability, MDPI, vol. 9(7), pages 1-10, July.
    7. Faisal A. Osra & Huseyin Kurtulus Ozcan & Jaber S. Alzahrani & Mohammad S. Alsoufi, 2021. "Municipal Solid Waste Characterization and Landfill Gas Generation in Kakia Landfill, Makkah," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    8. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Maria Triassi & Bruna De Simone & Paolo Montuori & Immacolata Russo & Elvira De Rosa & Fabiana Di Duca & Claudio Crivaro & Vittorio Cerullo & Patrizia Pontillo & Sergi Díez, 2023. "Determination of Residual Municipal Solid Waste Composition from Rural and Urban Areas: A Step toward the Optimization of a Waste Management System for Efficient Material Recovery," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    10. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    11. Asya İşçen & Kerem Öznacar & K. M. Murat Tunç & M. Erdem Günay, 2023. "Exploring the Critical Factors of Biomass Pyrolysis for Sustainable Fuel Production by Machine Learning," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    12. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    13. Khanyisile Lepota & Kasturie Premlall & Major Mabuza, 2025. "Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies," Waste, MDPI, vol. 3(3), pages 1-17, July.
    14. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    15. Yu, Xiunan & Zhang, Congguang & Qiu, Ling & Yao, Yiqing & Sun, Guotao & Guo, Xiaohui, 2020. "Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2484-2493.
    16. Rajesh Kumar Rai & Mani Nepal & Madan Singh Khadayat & Bishal Bhardwaj, 2019. "Improving Municipal Solid Waste Collection Services in Developing Countries: A Case of Bharatpur Metropolitan City, Nepal," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    17. Hachem-Vermette, Caroline & Grewal, Kuljeet Singh, 2019. "Investigation of the impact of residential mixture on energy and environmental performance of mixed use neighborhoods," Applied Energy, Elsevier, vol. 241(C), pages 362-379.
    18. Chen, Renjie & Yu, Xiaoqing & Dong, Bin & Dai, Xiaohu, 2020. "Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): Energy efficiency assessment and pyrolysis kinetics analysis," Energy, Elsevier, vol. 190(C).
    19. Pugazhendhi, Arivalagan & Sharma, Ashutosh, 2025. "A detailed survey of recyclable food discards for the production of alternative fuels – Present and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    20. Liu, Jingxin & Huang, Simian & Wang, Teng & Mei, Meng & Chen, Si & Zhang, Wenjuan & Li, Jinping, 2021. "Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste," Renewable Energy, Elsevier, vol. 179(C), pages 179-188.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4532-:d:1733501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.