IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp179-188.html
   My bibliography  Save this article

Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste

Author

Listed:
  • Liu, Jingxin
  • Huang, Simian
  • Wang, Teng
  • Mei, Meng
  • Chen, Si
  • Zhang, Wenjuan
  • Li, Jinping

Abstract

During the anaerobic digestion of restaurant food waste, the sludge obtained as the sediment from the liquid digestate (LDS) is a high–yield solid waste. However, its valorization has not attracted sufficient attention. This study systematically detected the physicochemical properties of this sludge, proposed and evaluated thermal strategies of pyrolysis and combustion. Pyrolysis was a mild endothermic process with considerable H2O, CO2, and hydrocarbon releasing, and the LDS-derived biochar had pore structures and abundant functional groups. Combustion was exothermic in a broad temperature interval of 140 °C–580 °C with emissions of H2O, CO2, and NH3, but the process was mild and slow, revealing the poor combustibility of LDS, in addition, the ash had a medium deposition tendency. According to the results obtained in this study, pyrolysis was suggested as a more appropriate method for the reduction and reutilization of LDS. This work will be useful and helpful for LDS valorization, thereby, facilitating the spread and popularization of anaerobic digestion of food waste.

Suggested Citation

  • Liu, Jingxin & Huang, Simian & Wang, Teng & Mei, Meng & Chen, Si & Zhang, Wenjuan & Li, Jinping, 2021. "Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste," Renewable Energy, Elsevier, vol. 179(C), pages 179-188.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:179-188
    DOI: 10.1016/j.renene.2021.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhan, Hao & Zhuang, Xiuzheng & Song, Yanpei & Yin, Xiuli & Wu, Chuangzhi, 2018. "Insights into the evolution of fuel-N to NOx precursors during pyrolysis of N-rich nonlignocellulosic biomass," Applied Energy, Elsevier, vol. 219(C), pages 20-33.
    2. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    3. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    4. Kayahan, Ufuk & Özdoğan, Sibel, 2016. "Oxygen enriched combustion and co-combustion of lignites and biomass in a 30 kWth circulating fluidized bed," Energy, Elsevier, vol. 116(P1), pages 317-328.
    5. Osman, Ahmed I., 2020. "Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal," Renewable Energy, Elsevier, vol. 146(C), pages 484-496.
    6. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
    7. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    8. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    9. Song, Yueyao & Hu, Jinwen & Evrendilek, Fatih & Buyukada, Musa & Liang, Guanjie & Huang, Wenxiao & Liu, Jingyong, 2021. "Reaction mechanisms and product patterns of Pteris vittata pyrolysis for cleaner energy," Renewable Energy, Elsevier, vol. 167(C), pages 600-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaur, Puneet & Talwar, Shalini & Madanaguli, Arun & Srivastava, Shalini & Dhir, Amandeep, 2022. "Corporate social responsibility (CSR) and hospitality sector: Charting new frontiers for restaurant businesses," Journal of Business Research, Elsevier, vol. 144(C), pages 1234-1248.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Xiuzheng & Song, Yanpei & Zhan, Hao & Yin, Xiuli & Wu, Chuangzhi, 2019. "Synergistic effects on the co-combustion of medicinal biowastes with coals of different ranks," Renewable Energy, Elsevier, vol. 140(C), pages 380-389.
    2. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Chen, Renjie & Yuan, Shijie & Wang, Xiankai & Dai, Xiaohu & Guo, Yali & Li, Chong & Wu, Haibin & Dong, Bin, 2023. "Mechanistic insight into the effect of hydrothermal treatment of sewage sludge on subsequent pyrolysis: Evolution of volatile and their interaction with pyrolysis kinetic and products compositions," Energy, Elsevier, vol. 266(C).
    4. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.
    5. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    6. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    7. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    8. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    9. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    10. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    11. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    12. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    13. Okey Francis Obi & Temitope Olumide Olugbade & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2023. "Solid Biofuel Production from Biomass: Technologies, Challenges, and Opportunities for Its Commercial Production in Nigeria," Energies, MDPI, vol. 16(24), pages 1-22, December.
    14. David Antonio Buentello-Montoya & Miguel Ángel Armenta-Gutiérrez & Victor Manuel Maytorena-Soria, 2023. "Parametric Modelling Study to Determine the Feasibility of the Co-Gasification of Macroalgae and Plastics for the Production of Hydrogen-Rich Syngas," Energies, MDPI, vol. 16(19), pages 1-18, September.
    15. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    16. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    17. Ibrahim Shaba Mohammed & Risu Na & Keisuke Kushima & Naoto Shimizu, 2020. "Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    18. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    19. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    20. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:179-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.