IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2480-d1653901.html
   My bibliography  Save this article

Energy, Exergic and Economic Analyses of a Novel Hybrid Solar–Gas System for Producing Electrical Power and Cooling

Author

Listed:
  • Qun Ge

    (Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China)

  • Xiaoman Cao

    (Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China)

  • Fumin Guo

    (Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China)

  • Jianpeng Li

    (Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China)

  • Cheng Wang

    (Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China)

  • Gang Wang

    (School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

This paper aims to evaluate the feasibility and performances of a novel hybrid solar–gas system, which provides electric power and cooling. By using Ebsilon (V15.0) software, the operation, advanced exergic and economic analyses of this hybrid system are conducted. The analysis results show that the total electric power and energy efficiency of the hybrid system are 96.0 MW and 45.8%. The solar energy system contributes an electric power of 9.0 MW. The maximum cooling load is 69.66 MW. The exergic loss and exergic efficiency of the whole hybrid system are 119.1 MW and 44.6%. The combustion chamber (CC) has the maximum exergic loss (56.5 MW). The exergic loss and exergic efficiency of the solar direct steam generator (SDSG) are 28.5 MW and 36.2%. For the air compressor (AC), CC, heat recovery steam generator (HRSG) and refrigeration system (CSS), a considerable part of the exergic loss is exogenous. The avoidable exergic loss of the CC is 11.69 MW. For the SDSG, there is almost no avoidable exergic loss. Economic analysis shows that for the hybrid system, the levelized cost of energy is 0.08125 USD/kWh, and the dynamic recycling cycle is 5.8 years, revealing certain economic feasibility. The results of this paper will contribute to the future research and development of solar–gas hybrid utilization technology to a certain extent.

Suggested Citation

  • Qun Ge & Xiaoman Cao & Fumin Guo & Jianpeng Li & Cheng Wang & Gang Wang, 2025. "Energy, Exergic and Economic Analyses of a Novel Hybrid Solar–Gas System for Producing Electrical Power and Cooling," Energies, MDPI, vol. 18(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2480-:d:1653901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsatsaronis, G. & Morosuk, T., 2010. "Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas," Energy, Elsevier, vol. 35(2), pages 820-829.
    2. Penkuhn, Mathias & Tsatsaronis, George, 2017. "A decomposition method for the evaluation of component interactions in energy conversion systems for application to advanced exergy-based analyses," Energy, Elsevier, vol. 133(C), pages 388-403.
    3. Baghernejad, A. & Yaghoubi, M., 2010. "Exergy analysis of an integrated solar combined cycle system," Renewable Energy, Elsevier, vol. 35(10), pages 2157-2164.
    4. Shucheng Wang & Zhongguang Fu & Gaoqiang Zhang & Tianqing Zhang, 2018. "Advanced Thermodynamic Analysis Applied to an Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(6), pages 1-16, June.
    5. Wang, Gang & Liu, Jialin & Cao, Yong & Chen, Zeshao, 2024. "Design and performance estimation of a novel solar multiplate mirror concentration PVT system based on nanofluid spectral filter," Renewable Energy, Elsevier, vol. 235(C).
    6. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    7. Zhang, Peiye & Liu, Ming & Hu, Wenting & Chong, Daotong & Yan, Junjie, 2025. "System design and thermo-economic analysis of a novel gas turbine combined cycle co-driven by methanol and solar energy," Applied Energy, Elsevier, vol. 380(C).
    8. Wang, Gang & Wang, Cheng & Chen, Zeshao & Hu, Peng, 2020. "Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle," Energy, Elsevier, vol. 197(C).
    9. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    10. Wang, Gang & Chao, Yuechao & Chen, Zeshao, 2021. "Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
    2. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    3. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    4. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    5. Wang, Gang & He, Dongyou & Wang, Fasi & Chen, Zeshao, 2024. "Design and performance estimate of a novel linear fresnel reflector solar-gas combined system for producing electricity and hydrogen," Renewable Energy, Elsevier, vol. 227(C).
    6. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    7. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Paitazoglou, Christopher, 2012. "Environmental evaluation of a power plant using conventional and advanced exergy-based methods," Energy, Elsevier, vol. 45(1), pages 23-30.
    8. Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
    9. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    10. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    11. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    12. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    13. Yang, Yongping & Wang, Ligang & Dong, Changqing & Xu, Gang & Morosuk, Tatiana & Tsatsaronis, George, 2013. "Comprehensive exergy-based evaluation and parametric study of a coal-fired ultra-supercritical power plant," Applied Energy, Elsevier, vol. 112(C), pages 1087-1099.
    14. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    15. Li, Longquan & Liu, Zhiqiang & Deng, Chengwei & Ren, Jingzheng & Ji, Feng & Sun, Yi & Xiao, Zhenyu & Yang, Sheng, 2021. "Conventional and advanced exergy analyses of a vehicular proton exchange membrane fuel cell power system," Energy, Elsevier, vol. 222(C).
    16. Ligang Wang & Yongping Yang & Tatiana Morosuk & George Tsatsaronis, 2012. "Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant," Energies, MDPI, vol. 5(6), pages 1-14, June.
    17. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    18. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    20. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2480-:d:1653901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.