IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121000800.html
   My bibliography  Save this article

Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system

Author

Listed:
  • Liang, Huaxu
  • Wang, Fuqiang
  • Yang, Luwei
  • Cheng, Ziming
  • Shuai, Yong
  • Tan, Heping

Abstract

Spectral beam splitting (SBS) hybrid PV/T system was a promising path for utilizing the full spectrum solar energy to cogenerate electricity and high-grade heat, with high conversion efficiency. To settle the balance between photoelectric and photothermal conversion performance for full spectrum solar energy utilization, the sunlight based on wavelength matching was divided into two or more parts at band-gap wavelength by a spectral beam splitter: sunlight with wavelength at and close to the band-gap of PV cell was directed to generate electricity, while the sunlight with rest wavelength was used for thermal output. SBS hybrid PV/T system can not only increase the overall efficiency, but can also decouple the photoelectric and photothermal conversion process in separated operation temperatures. The current state-of the-art review on the advancements of SBS hybrid PV/T system performed with the aid of nanofluids, nano-film and semitransparent PV cells was presented in this work, with emphasis on the latest developments during the last decade. Mechanisms of different SBS techniques, progress in system, thermodynamic and cost analyses of nanofluids, nano-film and semitransparent PV cell based SBS hybrid PV/T system were discussed in detail to give a comprehensive understanding of the nature of the full spectrum solar energy utilization and the factors impacting on the system efficiency. Though the cost increase can be offset by extra energy efficiency gain, the wavelength matching, optical losses and stability of SBS hybrid PV/T system needs to be solved for future industrial application.

Suggested Citation

  • Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000800
    DOI: 10.1016/j.rser.2021.110785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
    4. Guo, Zhihao & Deng, Shuai & Zhu, Yu & Zhao, Li & Yuan, Xiangzhou & Li, Shuangjun & Chen, Lijin, 2020. "Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation," Energy, Elsevier, vol. 208(C).
    5. Bai, Bin & Wang, Weizuo & Jin, Hui, 2020. "Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water," Energy, Elsevier, vol. 191(C).
    6. Fang, Juan & Liu, Qibin & Guo, Shaopeng & Lei, Jing & Jin, Hongguang, 2019. "Spanning solar spectrum: A combined photochemical and thermochemical process for solar energy storage," Applied Energy, Elsevier, vol. 247(C), pages 116-126.
    7. Wang, Gang & Yao, Yubo & Lin, Jianqing & Chen, Zeshao & Hu, Peng, 2020. "Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter," Renewable Energy, Elsevier, vol. 155(C), pages 1091-1102.
    8. Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
    9. Ahmed, K. Arshad & Natarajan, E., 2020. "Numerical investigation on the effect of toroidal rings in a parabolic trough receiver with the operation of gases: An energy and exergy analysis," Energy, Elsevier, vol. 203(C).
    10. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    11. Cheng, Ze-Dong & Men, Jing-Jing & He, Ya-Ling & Tao, Yu-Bing & Ma, Zhao, 2019. "Comprehensive study on novel parabolic trough solar receiver-reactors of gradually-varied porosity catalyst beds for hydrogen production," Renewable Energy, Elsevier, vol. 143(C), pages 1766-1781.
    12. Ali, Mahmoud & Rady, Mohamed & Attia, Mohamed A.A. & Ewais, Emad M.M., 2020. "Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers," Renewable Energy, Elsevier, vol. 145(C), pages 1849-1861.
    13. Zhou, Zhijun & Jiang, Cancheng & Huang, Huadong & Liang, Lijiang & Zhu, Guohun, 2020. "Three-junction tandem photovoltaic cell for a wide temperature range based on a multilayer circular truncated cone metamaterial emitter," Energy, Elsevier, vol. 210(C).
    14. Li, Lu & Li, Yinshi & Yu, Huajie & He, Ya-Ling, 2020. "A feedforward-feedback hybrid control strategy towards ordered utilization of concentrating solar energy," Renewable Energy, Elsevier, vol. 154(C), pages 305-315.
    15. Qu, Wanjun & Hong, Hui & Li, Qiang & Xuan, Yimin, 2018. "Co-producing electricity and solar syngas by transmitting photovoltaics and solar thermochemical process," Applied Energy, Elsevier, vol. 217(C), pages 303-313.
    16. Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
    17. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    18. Chemisana, D. & Fernandez, E.F. & Riverola, A. & Moreno, A., 2018. "Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications," Renewable Energy, Elsevier, vol. 123(C), pages 263-272.
    19. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    20. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    21. Tunkara, Ebrima & DeJarnette, Drew & Saunders, Aaron E. & Baldwin, Matthew & Otanicar, Todd & Roberts, Kenneth P., 2019. "Indium tin oxide and gold nanoparticle solar filters for concentrating photovoltaic thermal systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    22. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    23. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    24. Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Huang, Yihang & Hu, Mingke & Cao, Jingyu & Pei, Gang & Yang, Hongxing, 2020. "Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield," Applied Energy, Elsevier, vol. 268(C).
    25. Mohamad, Khaled & Ferrer, P., 2019. "Parabolic trough efficiency gain through use of a cavity absorber with a hot mirror," Applied Energy, Elsevier, vol. 238(C), pages 1250-1257.
    26. Shou, Chunhui & Luo, Zhongyang & Wang, Tao & Shen, Weidong & Rosengarten, Gary & Wei, Wei & Wang, Cheng & Ni, Mingjiang & Cen, Kefa, 2012. "Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems," Applied Energy, Elsevier, vol. 92(C), pages 298-306.
    27. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
    28. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
    29. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    30. Bie, Yu & Li, Ming & Chen, Fei & Królczyk, Grzegorz & Yang, Lin & Li, Zhixiong & Li, Weihua, 2019. "A novel empirical heat transfer model for a solar thermal storage process using phase change materials," Energy, Elsevier, vol. 168(C), pages 222-234.
    31. Han, Xinyue & Xue, Dengshuai & Zheng, Jun & Alelyani, Sami M. & Chen, Xiaobin, 2019. "Spectral characterization of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells," Renewable Energy, Elsevier, vol. 131(C), pages 938-945.
    32. Ling, Yunyi & Li, Wenjia & Jin, Jian & Yu, Yuhang & Hao, Yong & Jin, Hongguang, 2020. "A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation," Applied Energy, Elsevier, vol. 260(C).
    33. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    34. Zhou, Yi-Peng & Li, Ming-Jia & Yang, Wei-Wei & He, Ya-Ling, 2018. "The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process," Applied Energy, Elsevier, vol. 213(C), pages 169-178.
    35. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    36. Chen, Xue & Wang, Fuqiang & Yan, Xuewei & Han, Yafen & Cheng, Ziming & Jie, Zhu, 2018. "Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure," Energy, Elsevier, vol. 151(C), pages 545-555.
    37. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    38. Crisostomo, Felipe & Taylor, Robert A. & Zhang, Tian & Perez-Wurfl, Ivan & Rosengarten, Gary & Everett, Vernie & Hawkes, Evatt R., 2014. "Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector," Renewable Energy, Elsevier, vol. 72(C), pages 79-87.
    39. Crisostomo, Felipe & Taylor, Robert A. & Surjadi, Desiree & Mojiri, Ahmad & Rosengarten, Gary & Hawkes, Evatt R., 2015. "Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector," Applied Energy, Elsevier, vol. 141(C), pages 238-246.
    40. Ummadisingu, Amita & Soni, M.S., 2011. "Concentrating solar power – Technology, potential and policy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5169-5175.
    41. An, Wei & Zhang, Jie & Zhu, Tong & Gao, Naiping, 2016. "Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test," Renewable Energy, Elsevier, vol. 86(C), pages 633-642.
    42. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    43. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    44. Looser, R. & Vivar, M. & Everett, V., 2014. "Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications," Applied Energy, Elsevier, vol. 113(C), pages 1496-1511.
    45. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
    46. Li, Dong & Wu, Yangyang & Zhang, Guojun & Arıcı, Müslüm & Liu, Changyu & Wang, Fuqiang, 2018. "Influence of glazed roof containing phase change material on indoor thermal environment and energy consumption," Applied Energy, Elsevier, vol. 222(C), pages 343-350.
    47. Abdelrazik, A.S. & Saidur, R. & Al-Sulaiman, F.A., 2021. "Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter," Energy, Elsevier, vol. 215(PB).
    48. Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
    49. Sui, Jiyuan & Chen, Zhennan & Wang, Chen & Wang, Yueyang & Liu, Jianhong & Li, Wenjia, 2020. "Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization," Applied Energy, Elsevier, vol. 276(C).
    50. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    51. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "One-day performance evaluation of photovoltaic-thermoelectric hybrid system," Energy, Elsevier, vol. 143(C), pages 337-346.
    52. Zhou, Yi-Peng & Li, Ming-Jia & Hu, Yi-Huang & Ma, Teng, 2020. "Design and experimental investigation of a novel full solar spectrum utilization system," Applied Energy, Elsevier, vol. 260(C).
    53. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    54. Wang, Fuqiang & Shi, Xuhang & Zhang, Chuanxin & Cheng, Ziming & Chen, Xue, 2020. "Effects of non-uniform porosity on thermochemical performance of solar driven methane reforming," Energy, Elsevier, vol. 191(C).
    55. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    56. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
    57. Tang, Sanli & Hong, Hui & Jin, Hongguang & Xuan, Yimin, 2019. "A cascading solar hybrid system for co-producing electricity and solar syngas with nanofluid spectrum selector," Applied Energy, Elsevier, vol. 248(C), pages 231-240.
    58. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    59. Chinnici, A. & Nathan, G.J. & Dally, B.B., 2018. "Experimental demonstration of the hybrid solar receiver combustor," Applied Energy, Elsevier, vol. 224(C), pages 426-437.
    60. Cheng, Ze-Dong & Leng, Ya-Kun & Men, Jing-Jing & He, Ya-Ling, 2020. "Numerical study on a novel parabolic trough solar receiver-reactor and a new control strategy for continuous and efficient hydrogen production," Applied Energy, Elsevier, vol. 261(C).
    61. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    62. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    63. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    64. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).
    65. Li, Haoran & He, Yurong & Wang, Changhong & Wang, Xinzhi & Hu, Yanwei, 2019. "Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications," Applied Energy, Elsevier, vol. 236(C), pages 117-126.
    66. Tschopp, Daniel & Tian, Zhiyong & Berberich, Magdalena & Fan, Jianhua & Perers, Bengt & Furbo, Simon, 2020. "Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria," Applied Energy, Elsevier, vol. 270(C).
    67. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    68. Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
    69. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Meng, Chunfeng, 2021. "Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems," Energy, Elsevier, vol. 215(PA).
    70. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
    3. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    4. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    6. Li, Boyu & Hong, Wenpeng & Li, Haoran & Lan, Jingrui & Zi, Junliang, 2022. "Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis," Energy, Elsevier, vol. 242(C).
    7. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    8. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.
    9. Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
    10. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    11. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    12. Han, Xinyue & Chen, Xiaobin & Sun, Yao & Qu, Jian, 2020. "Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter," Energy, Elsevier, vol. 192(C).
    13. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    14. Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
    15. Han, Xinyue & Zhao, Xiaobo & Huang, Ju & Qu, Jian, 2022. "Optical properties optimization of plasmonic nanofluid to enhance the performance of spectral splitting photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 188(C), pages 573-587.
    16. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    17. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Khosa, Azhar Abbas & Meng, Chunfeng, 2022. "The stability, optical behavior optimization of Ag@SiO2 nanofluids and their application in spectral splitting photovoltaic/thermal receivers," Renewable Energy, Elsevier, vol. 190(C), pages 865-878.
    18. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Meng, Chunfeng, 2021. "Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems," Energy, Elsevier, vol. 215(PA).
    19. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    20. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Kirk, Alexander & Osowski, Mark & Cygan, David & Abbasi, Hamid, 2019. "Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C," Applied Energy, Elsevier, vol. 239(C), pages 514-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.