IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003839.html
   My bibliography  Save this article

Performance study of photovoltaic-thermochemical hybrid system with Cassegrain concentrator and spectral splitting integration

Author

Listed:
  • Li, Jinyu
  • Yang, Zhengda
  • Ge, Yi
  • Wang, Yiya
  • Dong, Qiwei
  • Wang, Xinwei
  • Lin, Riyi

Abstract

Given the cascade utilization of photon energy, concentrating spectral beam splitting hybrid conversion technology is one of the state-of-the-art solar energy harvesting schemes. In this paper, a novel photovoltaic-thermochemical hybrid system based on a Cassegrain concentrator is proposed for ameliorating optical efficiency and thermochemical conversion under spectral splitting. On this basis, solar energy penetration is improved by concentrating optimization and reactant flow regulation. A specially developed splitter is used to allocate different radiation bands, allowing for the thermochemical storage of photovoltaic loss at mid/low temperatures. The mathematical method covering ray tracing, parameter optimization, solar multi-effect conversion process, and evaluation is constructed and verified, by which the optical characteristics, thermodynamic regulation, and economic feasibility are quantitatively investigated. The results show that the optical efficiency of 79.2% can be obtained by multi-objective optimization considering the uniformity of energy flux and the deviation of ray incidence angle for the first time. With the assistance of the reactant flow strategy, the hybrid system has a solar-product conversion efficiency of more than 36.4% and a stable exergy conversion capacity under different irradiance conditions. Moreover, the system demonstrates a potential investment return and a controllable levelised cost of electricity. In summary, the research results will contribute to the feasibility of full-spectrum solar absorption and the applicability of dish concentrators in distributed scenarios.

Suggested Citation

  • Li, Jinyu & Yang, Zhengda & Ge, Yi & Wang, Yiya & Dong, Qiwei & Wang, Xinwei & Lin, Riyi, 2024. "Performance study of photovoltaic-thermochemical hybrid system with Cassegrain concentrator and spectral splitting integration," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003839
    DOI: 10.1016/j.energy.2024.130611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.