IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v114y2019ic17.html
   My bibliography  Save this article

A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends

Author

Listed:
  • Bushra, Nayab
  • Hartmann, Timo

Abstract

Every year a wide range of articles are published on reflective two-stage solar concentrators (TSSCs), that focus on either geometrical designs, performance characteristics, solar energy receivers, or applications. Among previous studies, no review article currently highlights all the aforementioned aspects to observe the overall research development of these systems. Therefore, this paper aims to develop a comprehensive analysis of reflective type TSSCs based on the review of research papers and patents and analyses the presented TSSC technologies along five categories: geometries, concentration ratio, optical performance, receivers, and applications. We found that the most dominant geometries applied in TSSC design were cassegrains and solar furnaces. Our review also shows that most papers focussed on applying TSSCs for power generation using solar cells, and thermo-electric generators. Most studied systems remained at medium, high and ultrahigh concentration level and medium to high optical efficiency. We also found that most studies only validated the proposed systems experimentally. Only a few studies focussing on solar furnaces have also been validated within large scale practical settings. The analytical results help to identify future research initiatives towards a wider spread practical implementation of TSSCs which emphasizes parametric modeling approach. Parametric models can provide a range of design alternatives which can be tested under multiple environmental conditions. Through joint use of receivers, these systems can be deployed for multiple applications. Additionally, development of cost-effective and energy efficient TSSCs further requires detailed feasibility studies, cost-benefit analysis, as well as, environmental impact analysis. Based on the categorization analysis and the proposed research initiatives, future research on TSSCs can proceed on a more solid footing.

Suggested Citation

  • Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:114:y:2019:i:c:17
    DOI: 10.1016/j.rser.2019.109307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong, K.K. & Lim, C.Y. & Hiew, C.W., 2011. "Cost-effective solar furnace system using fixed geometry Non-Imaging Focusing Heliostat and secondary parabolic concentrator," Renewable Energy, Elsevier, vol. 36(5), pages 1595-1602.
    2. Lee, Hyunjin & Chai, Kwankyo & Kim, Jongkyu & Lee, Sangnam & Yoon, Hwanki & Yu, Changkyun & Kang, Yongheack, 2014. "Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux," Energy, Elsevier, vol. 66(C), pages 63-69.
    3. Chong, Kok-Keong & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Ming-Hui & Tan, Woei-Chong & Lim, Boon-Han, 2017. "Dense-array concentrator photovoltaic prototype using non-imaging dish concentrator and an array of cross compound parabolic concentrators," Applied Energy, Elsevier, vol. 204(C), pages 898-911.
    4. Li, Ming-Jia & Song, Chen-Xi & Tao, Wen-Quan, 2016. "A hybrid model for explaining the short-term dynamics of energy efficiency of China’s thermal power plants," Applied Energy, Elsevier, vol. 169(C), pages 738-747.
    5. Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
    6. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    7. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    8. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    9. Islam, Md. Tasbirul & Shahir, S.A. & Uddin, T.M. Iftakhar & Saifullah, A.Z.A, 2014. "Current energy scenario and future prospect of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1074-1088.
    10. Chen, Wei-Hsin & Wang, Chien-Chang & Hung, Chen-I. & Yang, Chang-Chung & Juang, Rei-Cheng, 2014. "Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator," Energy, Elsevier, vol. 64(C), pages 287-297.
    11. Fuqiang, Wang & Qingzhi, Lai & Huaizhi, Han & Jianyu, Tan, 2016. "Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics," Applied Energy, Elsevier, vol. 164(C), pages 411-424.
    12. Al-Waeli, Ali H.A. & Sopian, K. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Photovoltaic/Thermal (PV/T) systems: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 109-130.
    13. Pérez-Higueras, Pedro & Ferrer-Rodríguez, Juan P. & Almonacid, Florencia & Fernández, Eduardo F., 2018. "Efficiency and acceptance angle of High Concentrator Photovoltaic modules: Current status and indoor measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 143-153.
    14. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    15. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    16. Rodriguez-Sanchez, David & Rosengarten, Gary, 2015. "Improving the concentration ratio of parabolic troughs using a second-stage flat mirror," Applied Energy, Elsevier, vol. 159(C), pages 620-632.
    17. Rahman, Mohammad Ziaur, 2014. "Advances in surface passivation and emitter optimization techniques of c-Si solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 734-742.
    18. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    19. Fuqiang, Wang & Jianyu, Tan & Huijian, Jin & Yu, Leng, 2015. "Thermochemical performance analysis of solar driven CO2 methane reforming," Energy, Elsevier, vol. 91(C), pages 645-654.
    20. Sharma, Atul, 2011. "A comprehensive study of solar power in India and World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1767-1776, May.
    21. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    22. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    23. Kumar, Vinod & Shrivastava, R.L. & Untawale, S.P., 2015. "Fresnel lens: A promising alternative of reflectors in concentrated solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 376-390.
    24. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    25. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    26. Ratismith, Wattana & Favre, Yann & Canaff, Maxime & Briggs, John, 2017. "A non-tracking concentrating collector for solar thermal applications," Applied Energy, Elsevier, vol. 200(C), pages 39-46.
    27. Ahmed, Shamsuddin & Islam, Md Tasbirul & Karim, Mohd Aminul & Karim, Nissar Mohammad, 2014. "Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh," Renewable Energy, Elsevier, vol. 72(C), pages 223-235.
    28. Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
    29. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    30. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    31. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    32. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    33. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    34. Micheli, Leonardo & Sarmah, Nabin & Luo, Xichun & Reddy, K.S. & Mallick, Tapas K, 2013. "Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 595-610.
    35. Chong, Kok-Keong & Lau, Sing-Liong & Yew, Tiong-Keat & Tan, Philip Chee-Lin, 2013. "Design and development in optics of concentrator photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 598-612.
    36. Madala, Srikanth & Boehm, Robert F., 2017. "A review of nonimaging solar concentrators for stationary and passive tracking applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 309-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Shidhani, Mazin & Gao, Min, 2023. "Improving angular response of crossed compound parabolic concentrators using rectangular entry aperture," Renewable Energy, Elsevier, vol. 204(C), pages 1-10.
    2. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    3. Karunesh Kant & Karthik Nithyanandam & Ranga Pitchumani, 2021. "Analysis and Optimization of a Novel Hexagonal Waveguide Concentrator for Solar Thermal Applications," Energies, MDPI, vol. 14(8), pages 1-24, April.
    4. Bushra, Nayab, 2023. "Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)," Applied Energy, Elsevier, vol. 340(C).
    5. Bushra, Nayab, 2023. "Techno-economic feasibility assessment of a planer cassegrain solar concentrator (PCSC) based on a parametric modeling approach," Energy, Elsevier, vol. 273(C).
    6. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "Performance assessment method for roof-integrated TSSCs," Applied Energy, Elsevier, vol. 322(C).
    7. Bushra, Nayab & Hartmann, Timo & Constantin Ungureanu, Lucian, 2022. "A method for global potential assessment of roof integrated two-stage solar concentrators (TSSCs) at district scale," Applied Energy, Elsevier, vol. 326(C).
    8. José Carlos Garcia Pereira & José Rodríguez & Jorge Cruz Fernandes & Luís Guerra Rosa, 2020. "Homogeneous Flux Distribution in High-Flux Solar Furnaces," Energies, MDPI, vol. 13(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    2. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    4. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    6. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    7. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    10. Santos, Daniel & Azgın, Ahmet & Castro, Jesus & Kizildag, Deniz & Rigola, Joaquim & Tunçel, Bilge & Turan, Raşit & Preßmair, Rupert & Felsberger, Richard & Buchroithner, Armin, 2023. "Thermal and fluid dynamic optimization of a CPV-T receiver for solar co-generation applications: Numerical modelling and experimental validation," Renewable Energy, Elsevier, vol. 211(C), pages 87-99.
    11. Al-Shidhani, Mazin & Gao, Min, 2023. "Improving angular response of crossed compound parabolic concentrators using rectangular entry aperture," Renewable Energy, Elsevier, vol. 204(C), pages 1-10.
    12. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    14. Lamnatou, Chr. & Chemisana, D., 2017. "Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues," Renewable Energy, Elsevier, vol. 105(C), pages 270-287.
    15. Abdullah Alamoudi & Syed Muhammad Saaduddin & Abu Bakar Munir & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Siti Hajar Mohd Yasin & Ridoan Karim & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorg, 2019. "Using Static Concentrator Technology to Achieve Global Energy Goal," Sustainability, MDPI, vol. 11(11), pages 1-22, May.
    16. Thanh Tuan Pham & Ngoc Hai Vu & Seoyong Shin, 2019. "Novel Design of Primary Optical Elements Based on a Linear Fresnel Lens for Concentrator Photovoltaic Technology," Energies, MDPI, vol. 12(7), pages 1-20, March.
    17. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    18. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
    19. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    20. Forman, Patrick & Penkert, Sebastian & Kämper, Christoph & Stallmann, Tobias & Mark, Peter & Schnell, Jürgen, 2020. "A survey of solar concrete shell collectors for parabolic troughs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:114:y:2019:i:c:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.