IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v28y2013icp812-823.html
   My bibliography  Save this article

Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology

Author

Listed:
  • Yadav, Pankaj
  • Tripathi, Brijesh
  • Rathod, Siddharth
  • Kumar, Manoj

Abstract

This article explores the potential of 1kWP low-concentration photovoltaic (LCPV) system for commercial purposes. Real-time analysis of in-house developed LCPV system shows better performance than the flat panel PV systems. Under actual test conditions (ATC), the open-circuit voltage (VOC) decreases with temperature coefficient of voltage ≈−0.061V/K. The dynamic resistance is found to have a positive coefficient of module temperature i.e., drd/dT≈0.49Ω/K. The annual energy generation of 1kWP LCPV power plant is envisaged as 1747.2kWh/kWP while the annual average daily final yield, reference yield and array yield were 3.76, 5.09 and 4.29h/day, respectively. The annual average daily performance ratio and capacity factor are 72% and 14%, respectively. The annual average daily system losses and capture losses are 0.57 and 0.80h/day correspondingly.

Suggested Citation

  • Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
  • Handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:812-823
    DOI: 10.1016/j.rser.2013.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211300587X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.08.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abu-Bakar, Siti Hawa & Muhammad-Sukki, Firdaus & Ramirez-Iniguez, Roberto & Mallick, Tapas Kumar & McLennan, Campbell & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Abdul Rahim, Ruzairi, 2013. "Is Renewable Heat Incentive the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 365-378.
    2. Sidrach-de-Cardona, M & Mora López, Ll, 1999. "Performance analysis of a grid-connected photovoltaic system," Energy, Elsevier, vol. 24(2), pages 93-102.
    3. Zahedi, A., 2011. "Review of modelling details in relation to low-concentration solar concentrating photovoltaic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1609-1614, April.
    4. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    5. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    6. Du, Bin & Hu, Eric & Kolhe, Mohan, 2012. "Performance analysis of water cooled concentrated photovoltaic (CPV) system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6732-6736.
    7. Micheli, Leonardo & Sarmah, Nabin & Luo, Xichun & Reddy, K.S. & Mallick, Tapas K, 2013. "Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 595-610.
    8. Chong, Kok-Keong & Lau, Sing-Liong & Yew, Tiong-Keat & Tan, Philip Chee-Lin, 2013. "Design and development in optics of concentrator photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 598-612.
    9. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2013. "Models for the electrical characterization of high concentration photovoltaic cells and modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 752-760.
    10. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2007. "A novel model for photovoltaic array performance prediction," Applied Energy, Elsevier, vol. 84(12), pages 1187-1198, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    2. Daneshazarian, Reza & Cuce, Erdem & Cuce, Pinar Mert & Sher, Farooq, 2018. "Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 473-492.
    3. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    4. Khalid, Maria & Shanks, Katie & Ghosh, Aritra & Tahir, Asif & Sundaram, Senthilarasu & Mallick, Tapas Kumar, 2021. "Temperature regulation of concentrating photovoltaic window using argon gas and polymer dispersed liquid crystal films," Renewable Energy, Elsevier, vol. 164(C), pages 96-108.
    5. Al-Shidhani, Mazin & Gao, Min, 2023. "Improving angular response of crossed compound parabolic concentrators using rectangular entry aperture," Renewable Energy, Elsevier, vol. 204(C), pages 1-10.
    6. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    7. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    8. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    2. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    3. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    4. Zhang, J.J. & Qu, Z.G. & Zhang, J.F., 2022. "Diode model of nonuniform irradiation treatment to predict multiscale solar-electrical conversion for the concentrating plasmonic photovoltaic system," Applied Energy, Elsevier, vol. 324(C).
    5. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    6. Karathanassis, I.K. & Papanicolaou, E. & Belessiotis, V. & Bergeles, G.C., 2017. "Design and experimental evaluation of a parabolic-trough concentrating photovoltaic/thermal (CPVT) system with high-efficiency cooling," Renewable Energy, Elsevier, vol. 101(C), pages 467-483.
    7. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    8. Perez-Enciso, Ricardo & Gallo, Alessandro & Riveros-Rosas, David & Fuentealba-Vidal, Edward & Perez-Rábago, Carlos, 2016. "A simple method to achieve a uniform flux distribution in a multi-faceted point focus concentrator," Renewable Energy, Elsevier, vol. 93(C), pages 115-124.
    9. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    10. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    13. Thanh Tuan Pham & Ngoc Hai Vu & Seoyong Shin, 2019. "Novel Design of Primary Optical Elements Based on a Linear Fresnel Lens for Concentrator Photovoltaic Technology," Energies, MDPI, vol. 12(7), pages 1-20, March.
    14. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    15. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
    16. Rehman, Naveed ur & Uzair, Muhammad, 2022. "Concentrator shape optimization using particle swarm optimization for solar concentrating photovoltaic applications," Renewable Energy, Elsevier, vol. 184(C), pages 1043-1054.
    17. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    18. Alzahrani, Mussad & Shanks, Katie & Mallick, Tapas K., 2021. "Advances and limitations of increasing solar irradiance for concentrating photovoltaics thermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    20. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:812-823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.