IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v57y2016icp1520-1544.html
   My bibliography  Save this article

Uniform cooling of photovoltaic panels: A review

Author

Listed:
  • Bahaidarah, Haitham M.S.
  • Baloch, Ahmer A.B.
  • Gandhidasan, Palanichamy

Abstract

Cooling of PV panels is a critical issue in the design and operation of concentrated photovoltaic (CPV) technology. Due to high cell temperature and non-uniform temperature distribution, current mismatching problem and hot spot occurs on the cell resulting in either reduction of efficiency or permanent structural damage due to thermal stresses. Temperature non-uniformity on the surface of PV panel has a major impact on the performance of CPV systems and directly increases cell temperature and series resistance. This review paper highlights the importance of uniform PV cooling by exploring the possible causes and effects of non-uniformity. Cooling techniques with low average cell temperature and uniform temperature distribution are analyzed. Economic and environmental impact on the importance of cooling of PV systems are discussed and an experimental case study is presented for comparison between uniform and non-uniform cooling methods. Immersion cooling is a promising solution for uniform cooling and has been reported to reduce the cell temperature to 20–45°C for CPV systems. Heat pipes reduced the temperature down to 32°C with the best case temperature non-uniformity of 3°C. Passive cooling by heat sinks was found to reduce the cell temperature as low as 37°C for high concentrations but with an expense of large heat sink area. Active cooling by microchannels, impingement cooling and hybrid microchannel-impingement cooling were found to be most effective in dissipating high heat flux from PV surface. Cell temperature was reported to decrease to 30°C for 200× CPV using impingement cooling. For hybrid cooling, deviation of 0.46°C surface temperature was obtained. Using PCM materials temperature of panel was controlled within 28–65°C whereas optimization of heat exchanger designs also showed low and uniform temperature across surface. The impact of non-uniformity was found to be significant for all PV systems however the effect is more pronounced in CPV systems.

Suggested Citation

  • Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
  • Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1520-1544
    DOI: 10.1016/j.rser.2015.12.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115014471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    2. Yadav, Pankaj & Tripathi, Brijesh & Rathod, Siddharth & Kumar, Manoj, 2013. "Real-time analysis of low-concentration photovoltaic systems: A review towards development of sustainable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 812-823.
    3. Cucchiella, Federica & D׳Adamo, Idiano & Rosa, Paolo, 2015. "End-of-Life of used photovoltaic modules: A financial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 552-561.
    4. Kumar, Rakesh & Rosen, Marc A., 2011. "A critical review of photovoltaic–thermal solar collectors for air heating," Applied Energy, Elsevier, vol. 88(11), pages 3603-3614.
    5. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    6. Han, Xinyue & Wang, Yiping & Zhu, Li, 2011. "Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids," Applied Energy, Elsevier, vol. 88(12), pages 4481-4489.
    7. Sun, Yong & Wang, Yiping & Zhu, Li & Yin, Baoquan & Xiang, Haijun & Huang, Qunwu, 2014. "Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver," Energy, Elsevier, vol. 65(C), pages 264-271.
    8. Abednego Oscar Tanuwijava & Ching Jenq Ho & Chi-Ming Lai & Chao-Yang Huang, 2013. "Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications," Energies, MDPI, vol. 6(8), pages 1-15, August.
    9. Hsin-Jung Huang & Sheng-Chih Shen & Heiu-Jou Shaw, 2012. "Design and Fabrication of a Novel Hybrid-Structure Heat Pipe for a Concentrator Photovoltaic," Energies, MDPI, vol. 5(11), pages 1-10, October.
    10. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    11. Amin, Nowshad & Lung, Chin Wen & Sopian, Kamaruzzaman, 2009. "A practical field study of various solar cells on their performance in Malaysia," Renewable Energy, Elsevier, vol. 34(8), pages 1939-1946.
    12. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    13. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    14. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    15. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    16. Micheli, Leonardo & Sarmah, Nabin & Luo, Xichun & Reddy, K.S. & Mallick, Tapas K, 2013. "Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 595-610.
    17. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    18. Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
    19. Mohammed Adham, Ahmed & Mohd-Ghazali, Normah & Ahmad, Robiah, 2013. "Thermal and hydrodynamic analysis of microchannel heat sinks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 614-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    2. Nadda, Rahul & Kumar, Anil & Maithani, Rajesh, 2018. "Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 331-353.
    3. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    4. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    5. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    6. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    7. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    8. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    9. Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.
    10. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    11. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    12. Idris Al Siyabi & Arwa Al Mayasi & Aiman Al Shukaili & Sourav Khanna, 2021. "Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions," Energies, MDPI, vol. 14(3), pages 1-18, January.
    13. Kim, Namsu & Kim, Dajung & Kang, Hanjun & Park, Yong-Gi, 2016. "Improved heat dissipation in a crystalline silicon PV module for better performance by using a highly thermal conducting backsheet," Energy, Elsevier, vol. 113(C), pages 515-520.
    14. Hussain, F. & Othman, M.Y.H & Sopian, K. & Yatim, B. & Ruslan, H. & Othman, H., 2013. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 431-441.
    15. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    16. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    17. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    18. Hernandez-Perez, J.G. & Carrillo, J.G. & Bassam, A. & Flota-Banuelos, M. & Patino-Lopez, L.D., 2020. "A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation," Renewable Energy, Elsevier, vol. 147(P1), pages 1209-1220.
    19. Nasrin, R. & Rahim, N.A. & Fayaz, H. & Hasanuzzaman, M., 2018. "Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research," Renewable Energy, Elsevier, vol. 121(C), pages 286-300.
    20. Salem, M.R. & Elsayed, M.M. & Abd-Elaziz, A.A. & Elshazly, K.M., 2019. "Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques," Renewable Energy, Elsevier, vol. 138(C), pages 876-890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1520-1544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.