IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p659-d488549.html
   My bibliography  Save this article

Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions

Author

Listed:
  • Idris Al Siyabi

    (Petroleum Development Oman, P.O. Box 81, Muscat 100, Oman
    University of Nizwa, P.O. Box 33, Nizwa 616, Oman)

  • Arwa Al Mayasi

    (Petroleum Development Oman, P.O. Box 81, Muscat 100, Oman)

  • Aiman Al Shukaili

    (Petroleum Development Oman, P.O. Box 81, Muscat 100, Oman)

  • Sourav Khanna

    (School of Energy and Electronic Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK)

Abstract

The solar irradiation at the gulf Arabia is considered one of the highest in the world. However, this region is classified as a desert with high dust accumulation. Thus, the objective of this study is to analyze the effect of soiling and the photovoltaic (PV) tilt angle on the performance of 2.0 MWp of car park PV plant in Oman. Experimental measurements were taken and a model was developed for simulation. The power generation by the cleaned PV system was measured as 1460 kW around noon. After one week of operation, the power production (at the same irradiance level) reduced to 1390 kW due to soiling. It further reduced to 1196 kW and 904 kW after three and five weeks of operation, respectively. The results also show that a soiling-percentage of 7.5% reduced the monthly electricity generation (307 MWh) by 5.6% and a soiling-percentage of 12.5% reduced the generation by 10.8%. Furthermore, the increase in tilt is not recommended due to the duo-pitch canopy effect of the car park where the panels with 180° azimuth generate lower electricity than the panels with 0° azimuth. In addition, the part of the car park with 180° azimuth caused shading to the other part for high tilt angles.

Suggested Citation

  • Idris Al Siyabi & Arwa Al Mayasi & Aiman Al Shukaili & Sourav Khanna, 2021. "Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions," Energies, MDPI, vol. 14(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:659-:d:488549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Xinyue & Wang, Yiping & Zhu, Li, 2011. "Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids," Applied Energy, Elsevier, vol. 88(12), pages 4481-4489.
    2. Kazem, Hussein A., 2011. "Renewable energy in Oman: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3465-3469.
    3. Alnaser, W.E. & Alnaser, N.W., 2011. "The status of renewable energy in the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3074-3098, August.
    4. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    5. Kaldellis, J.K. & Kapsali, M., 2011. "Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements," Energy, Elsevier, vol. 36(8), pages 5154-5161.
    6. Darwish, Zeki Ahmed & Kazem, Hussein A. & Sopian, K. & Al-Goul, M.A. & Alawadhi, Hussain, 2015. "Effect of dust pollutant type on photovoltaic performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 735-744.
    7. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    8. Charabi, Yassine & Gastli, Adel, 2013. "Integration of temperature and dust effects in siting large PV power plant in hot arid area," Renewable Energy, Elsevier, vol. 57(C), pages 635-644.
    9. Singh, Tejvir & Hussien, Muataz Ali Atieh & Al-Ansari, Tareq & Saoud, Khaled & McKay, Gordon, 2018. "Critical review of solar thermal resources in GCC and application of nanofluids for development of efficient and cost effective CSP technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 708-719.
    10. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    11. Micheli, Leonardo & Sarmah, Nabin & Luo, Xichun & Reddy, K.S. & Mallick, Tapas K, 2013. "Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 595-610.
    12. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    13. Idris Al Siyabi & Sourav Khanna & Tapas Mallick & Senthilarasu Sundaram, 2018. "Multiple Phase Change Material (PCM) Configuration for PCM-Based Heat Sinks—An Experimental Study," Energies, MDPI, vol. 11(7), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme Souza & Ricardo Santos & Erlandson Saraiva, 2022. "A Log-Logistic Predictor for Power Generation in Photovoltaic Systems," Energies, MDPI, vol. 15(16), pages 1-16, August.
    2. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Universal Model to Predict Expected Direction of Products Quality Improvement," Energies, MDPI, vol. 15(5), pages 1-18, February.
    3. Antonia Sônia A. C. Diniz & Tulio P. Duarte & Suellen A. C. Costa & Daniel Sena Braga & Vinicius Camatta Santana & Lawrence L. Kazmerski, 2022. "Soiling Spectral and Module Temperature Effects: Comparisons of Competing Operating Parameters for Four Commercial PV Module Technologies," Energies, MDPI, vol. 15(15), pages 1-18, July.
    4. Loiy Al-Ghussain & Moath Abu Subaih & Andres Annuk, 2022. "Evaluation of the Accuracy of Different PV Estimation Models and the Effect of Dust Cleaning: Case Study a 103 MW PV Plant in Jordan," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    5. Anis Ahmad Sher & Naseem Ahmad & Mariyam Sattar & Usman Ghafoor & Umer Hameed Shah, 2023. "Effect of Various Dusts and Humidity on the Performance of Renewable Energy Modules," Energies, MDPI, vol. 16(13), pages 1-20, June.
    6. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    7. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "A New Model of Pro-Quality Decision Making in Terms of Products’ Improvement Considering Customer Requirements," Energies, MDPI, vol. 16(11), pages 1-22, May.
    8. Pavel Kuznetsov & Dmitry Kotelnikov & Leonid Yuferev & Vladimir Panchenko & Vadim Bolshev & Marek Jasiński & Aymen Flah, 2022. "Method for the Automated Inspection of the Surfaces of Photovoltaic Modules," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    9. Adrian Neacsa & Cristian Nicolae Eparu & Doru Bogdan Stoica, 2022. "Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment," Energies, MDPI, vol. 15(17), pages 1-26, August.
    10. Dávid Matusz-Kalász & István Bodnár, 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination," Energies, MDPI, vol. 14(17), pages 1-13, September.
    11. Grzegorz Ostasz & Dominika Siwiec & Andrzej Pacana, 2022. "Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations," Energies, MDPI, vol. 15(21), pages 1-21, October.
    12. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    13. Thi Thu Em Vo & Seung-Mo Je & Se-Hoon Jung & Jaehyeon Choi & Jun-Ho Huh & Han-Jong Ko, 2022. "Review of Photovoltaic Power and Aquaculture in Desert," Energies, MDPI, vol. 15(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    3. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    4. Al-Maamary, Hilal M.S. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "The impact of oil price fluctuations on common renewable energies in GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 989-1007.
    5. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    6. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    7. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    8. Aisha Al-Sarihi & Noura Mansouri, 2022. "Renewable Energy Development in the Gulf Cooperation Council Countries: Status, Barriers, and Policy Options," Energies, MDPI, vol. 15(5), pages 1-16, March.
    9. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Sun, Tianyi & Liu, Peng, 2021. "A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system," Energy, Elsevier, vol. 234(C).
    10. Lei Li & Ting Chi & Meng Zhang & Shi Wang, 2016. "Multi-Layered Capital Subsidy Policy for the PV Industry in China Considering Regional Differences," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    11. Di Capua H, Mario & Escobar, Rodrigo & Diaz, A.J. & Guzmán, Amador M., 2018. "Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forward triangular ribs on sidewalls," Applied Energy, Elsevier, vol. 226(C), pages 160-180.
    12. Abdullahi Abubakar Mas’ud & Asan Vernyuy Wirba & Saud J. Alshammari & Firdaus Muhammad-Sukki & Mu’azu Mohammed Abdullahi & Ricardo Albarracín & Mohammed Ziaul Hoq, 2018. "Solar Energy Potentials and Benefits in the Gulf Cooperation Council Countries: A Review of Substantial Issues," Energies, MDPI, vol. 11(2), pages 1-20, February.
    13. Zeki Ahmed Darwish & Hussein A. Kazem & K. Sopian & M. A. Alghoul & Hussain Alawadhi, 2018. "Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: an experimental study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 155-174, February.
    14. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    15. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    16. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Ramadan J. Mustafa & Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Hegazy Rezk, 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    18. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    19. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    20. Chemisana, D. & Fernandez, E.F. & Riverola, A. & Moreno, A., 2018. "Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications," Renewable Energy, Elsevier, vol. 123(C), pages 263-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:659-:d:488549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.