IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v64y2016icp382-393.html
   My bibliography  Save this article

Performance enhancement of solar photovoltaic cells using effective cooling methods: A review

Author

Listed:
  • Sargunanathan, S.
  • Elango, A.
  • Mohideen, S. Tharves

Abstract

The Photovoltaic (PV) cells are sensitive to temperature variations. When the ambient temperature and the intensity of solar irradiance falling on the PV cells increases, the operating temperature of the PV cells also increases linearly. This increase in operating temperature of the PV cells leads to reduction in open circuit voltage, fill factor and power output for mono and polycrystalline PV cells which are used in most of the power applications. The net results lead to the loss of conversion efficiency and irreversible damage to the PV cells materials. Therefore, to overcome these effects and to maintain the operating temperature of the PV cells within the manufacturer specified value, it is necessary to remove heat from the PV cells by proper cooling methods. This review presents an overview on passive cooling (heat pipe based and by fins), active cooling (by spraying water), liquid immersion cooling and cooling by employing phase change material (PCM) to enhance the performance of the commercially available PV and concentrated photovoltaic (CPV) cells.

Suggested Citation

  • Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
  • Handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:382-393
    DOI: 10.1016/j.rser.2016.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116302453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siddiqui, M.U. & Arif, A.F.M., 2013. "Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model," Applied Energy, Elsevier, vol. 112(C), pages 300-312.
    2. Erdem Cuce & Tulin Bali & Suphi Anil Sekucoglu, 2011. "Effects of passive cooling on performance of silicon photovoltaic cells," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(4), pages 299-308, July.
    3. Kordzadeh, Azadeh, 2010. "The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water," Renewable Energy, Elsevier, vol. 35(5), pages 1098-1102.
    4. Shenyi Wu & Chenguang Xiong, 2014. "Passive cooling technology for photovoltaic panels for domestic houses," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 118-126.
    5. Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Scandura, P.F., 2010. "Submerged photovoltaic solar panel: SP2," Renewable Energy, Elsevier, vol. 35(8), pages 1862-1865.
    6. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    7. Han, Xinyue & Wang, Yiping & Zhu, Li, 2011. "Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids," Applied Energy, Elsevier, vol. 88(12), pages 4481-4489.
    8. Wang, Yiping & Fang, Zhenlei & Zhu, Li & Huang, Qunwu & Zhang, Yan & Zhang, Zhiying, 2009. "The performance of silicon solar cells operated in liquids," Applied Energy, Elsevier, vol. 86(7-8), pages 1037-1042, July.
    9. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    10. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    11. Kerzmann, Tony & Schaefer, Laura, 2012. "System simulation of a linear concentrating photovoltaic system with an active cooling system," Renewable Energy, Elsevier, vol. 41(C), pages 254-261.
    12. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    2. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    3. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions," Energy, Elsevier, vol. 195(C).
    4. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    5. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    6. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    7. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    8. Tina, G.M. & Rosa-Clot, M. & Rosa-Clot, P. & Scandura, P.F., 2012. "Optical and thermal behavior of submerged photovoltaic solar panel: SP2," Energy, Elsevier, vol. 39(1), pages 17-26.
    9. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    10. Jae Woo Ko & Hae Lim Cha & David Kwang-Soon Kim & Jong Rok Lim & Gyu Gwang Kim & Byeong Gwan Bhang & Chang Sub Won & Han Sang Jung & Dong Hyung Kang & Hyung Keun Ahn, 2017. "Safety Analysis of Grounding Resistance with Depth of Water for Floating PVs," Energies, MDPI, vol. 10(9), pages 1-12, September.
    11. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    13. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    14. Browne, M.C. & Norton, B. & McCormack, S.J., 2015. "Phase change materials for photovoltaic thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 762-782.
    15. Salem, M.R. & Elsayed, M.M. & Abd-Elaziz, A.A. & Elshazly, K.M., 2019. "Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques," Renewable Energy, Elsevier, vol. 138(C), pages 876-890.
    16. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    17. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    18. Yang, Li-Hao & Liang, Jyun-De & Hsu, Chien-Yeh & Yang, Tai-Her & Chen, Sih-Li, 2019. "Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger," Renewable Energy, Elsevier, vol. 134(C), pages 970-981.
    19. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    20. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:382-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.