IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3416-d188383.html
   My bibliography  Save this article

A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems

Author

Listed:
  • Manxuan Xiao

    (Department of Architecture and Built Environment, University of Nottingham, Ningbo 315000, China)

  • Llewellyn Tang

    (Department of Real Estate and Construction, Faculty of Architecture, The University of Hong Kong, Hong Kong 999077, China)

  • Xingxing Zhang

    (Department of Energy, Forest and Built Environments, Dalarna University, 79188 Falun, Sweden)

  • Isaac Yu Fat Lun

    (Department of Architecture and Built Environment, University of Nottingham, Ningbo 315000, China)

  • Yanping Yuan

    (School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610000, China)

Abstract

Concentrated Photovoltaics (CPV) technology, as an energy saving method which can directly generate electricity from the Sun, has attracted an ever-increasing attention with the deepening worldwide energy crisis. However, operating temperature is one of the main concerns that affect the CPV system. Excess cell temperature causes electrical conversion efficiency loss and cell lifespan decrease. Thus, reasonable cooling methods should decrease the operating temperature and balance the flare inhomogeneity. They also need to display high reliability, low power consumption, and convenient installation. This paper presented the architectural, commercial, and industrial usage of CPV system, reviewed the recent research developments of different cooling techniques of CPV systems during last few years, including the spectral beam splitting technology, cogeneration power technology, commonly used and promising cooling techniques, active and passive cooling methods. It also analysed the design considerations of the cooling methods in CPV systems, introduced the classification and basic working principles and provided a thorough compilation of different cooling techniques with their advantages, current research limitations, challenges, and possible further research directions. The aim of this work is to find the research gap and recommend feasible research direction of cooling technologies for CPV systems.

Suggested Citation

  • Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3416-:d:188383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3416/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    2. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    3. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    4. Jakhar, Sanjeev & Soni, M.S. & Gakkhar, Nikhil, 2016. "Historical and recent development of concentrating photovoltaic cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 41-59.
    5. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    6. Gakkhar, Nikhil & Soni, M.S. & Jakhar, Sanjeev, 2016. "Second law thermodynamic study of solar assisted distillation system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 519-535.
    7. Huen, Priscilla & Daoud, Walid A., 2017. "Advances in hybrid solar photovoltaic and thermoelectric generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1295-1302.
    8. Soni, M.S. & Gakkhar, Nikhil, 2014. "Techno-economic parametric assessment of solar power in India: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 326-334.
    9. Lu, Wei & Wu, Yupeng & Eames, Philip, 2018. "Design and development of a Building Façade Integrated Asymmetric Compound Parabolic Photovoltaic concentrator (BFI-ACP-PV)," Applied Energy, Elsevier, vol. 220(C), pages 325-336.
    10. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    11. Hsin-Jung Huang & Sheng-Chih Shen & Heiu-Jou Shaw, 2012. "Design and Fabrication of a Novel Hybrid-Structure Heat Pipe for a Concentrator Photovoltaic," Energies, MDPI, vol. 5(11), pages 1-10, October.
    12. He, Wei & Chow, Tin-Tai & Ji, Jie & Lu, Jianping & Pei, Gang & Chan, Lok-shun, 2006. "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, Elsevier, vol. 83(3), pages 199-210, March.
    13. Pérez-Higueras, P. & Muñoz, E. & Almonacid, G. & Vidal, P.G., 2011. "High Concentrator PhotoVoltaics efficiencies: Present status and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1810-1815, May.
    14. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    15. Zhang, Jin & Xuan, Yimin, 2017. "Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation," Renewable Energy, Elsevier, vol. 113(C), pages 1551-1558.
    16. Sahay, Amit & Sethi, V.K. & Tiwari, A.C. & Pandey, Mukesh, 2015. "A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 306-312.
    17. Baig, Hasan & Heasman, Keith C. & Mallick, Tapas K., 2012. "Non-uniform illumination in concentrating solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5890-5909.
    18. Du, Bin & Hu, Eric & Kolhe, Mohan, 2012. "Performance analysis of water cooled concentrated photovoltaic (CPV) system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6732-6736.
    19. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    20. Benghanem, M. & Al-Mashraqi, A.A. & Daffallah, K.O., 2016. "Performance of solar cells using thermoelectric module in hot sites," Renewable Energy, Elsevier, vol. 89(C), pages 51-59.
    21. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    22. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Baig, H. & Fernandez, E.F. & Mallick, T.K. & Montecucco, A. & Siviter, J. & Knox, A.R. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems," Renewable Energy, Elsevier, vol. 112(C), pages 166-186.
    23. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    24. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    25. Mohsenzadeh, Milad & Shafii, M.B. & Jafari mosleh, H., 2017. "A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design," Renewable Energy, Elsevier, vol. 113(C), pages 822-834.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2021. "Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art," Energies, MDPI, vol. 14(11), pages 1-20, May.
    2. Su, Yan & Sui, Pengxiang & Davidson, Jane H., 2022. "A sub-continuous lattice Boltzmann simulation for nanofluid cooling of concentrated photovoltaic thermal receivers," Renewable Energy, Elsevier, vol. 184(C), pages 712-726.
    3. Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    4. Khalifa Aliyu Ibrahim & Patrick Luk & Zhenhua Luo, 2023. "Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling," Energies, MDPI, vol. 16(6), pages 1-23, March.
    5. Waseem Iqbal & Irfan Ullah & Seoyong Shin, 2023. "Optical Developments in Concentrator Photovoltaic Systems—A Review," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    6. Ahmed T. Okasha & Fahad Ghallab Al-Amri & Taher Maatallah & Nagmeldeen A. M. Hassanain & Abdullah Khalid Alghamdi & Richu Zachariah, 2022. "Numerical Study of Single-Layer and Stacked Minichannel-Based Heat Sinks Using Different Truncating Ratios for Cooling High Concentration Photovoltaic Systems," Sustainability, MDPI, vol. 14(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    2. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    3. Jakhar, Sanjeev & Soni, M.S. & Gakkhar, Nikhil, 2016. "Historical and recent development of concentrating photovoltaic cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 41-59.
    4. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.
    5. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    6. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    7. Salem, M.R. & Elsayed, M.M. & Abd-Elaziz, A.A. & Elshazly, K.M., 2019. "Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques," Renewable Energy, Elsevier, vol. 138(C), pages 876-890.
    8. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    9. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    10. Chen, Liang & Deng, Daxiang & Ma, Qixian & Yao, Yingxue & Xu, Xinhai, 2022. "Performance evaluation of high concentration photovoltaic cells cooled by microchannels heat sink with serpentine reentrant microchannels," Applied Energy, Elsevier, vol. 309(C).
    11. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    12. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    13. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    14. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    15. Yang, Li-Hao & Liang, Jyun-De & Hsu, Chien-Yeh & Yang, Tai-Her & Chen, Sih-Li, 2019. "Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger," Renewable Energy, Elsevier, vol. 134(C), pages 970-981.
    16. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    17. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    18. Nadda, Rahul & Kumar, Anil & Maithani, Rajesh, 2018. "Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 331-353.
    19. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    20. Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3416-:d:188383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.