IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp712-726.html
   My bibliography  Save this article

A sub-continuous lattice Boltzmann simulation for nanofluid cooling of concentrated photovoltaic thermal receivers

Author

Listed:
  • Su, Yan
  • Sui, Pengxiang
  • Davidson, Jane H.

Abstract

Nanofluid cooling of a concentrated photovoltaic thermal (CPVT) receiver was simulated by a sub-continuous lattice Boltzmann model with the effective thermal conductivity (ETC) and the effective viscosity (EV) nonlinearly related to both nanoparticle concentration and size. Al2O3-water nanofluid cooling efficiencies for various solar irradiance are compared with those of pure water cooling. Flow and temperature fields are simulated for nanofluids with the nanoparticle concentration from 1% to 10%, particle size less than 120 nm, and flow rate over a range of 0.17–3.34 L/min (i.e., the inlet velocity from 1/10 to 2 times of the natural convection velocity scale). In dimensionless form, the parameters are described by concentration, Knudsen number and Richardson number. The enhancement ratios of Nusselt numbers, drag coefficients, and power coefficients due to the application of nanofluids compared to water are presented. An objective enhancement function is defined as the ratio of the Nusselt number to the power coefficient. The maximum enhancement ratio is 1.14 for nanoparticle concentration at 8%, Knudsen number at 0.1 (Al2O3 nanoparticle size 6 nm), and Richardson number 10 (the inlet velocity about 1/3 of the natural convection velocity scale), respectively. This study provides a practical tool for optimal nanofluid cooling enhancement of CPVT solar receivers.

Suggested Citation

  • Su, Yan & Sui, Pengxiang & Davidson, Jane H., 2022. "A sub-continuous lattice Boltzmann simulation for nanofluid cooling of concentrated photovoltaic thermal receivers," Renewable Energy, Elsevier, vol. 184(C), pages 712-726.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:712-726
    DOI: 10.1016/j.renene.2021.11.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121017018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.
    2. Pérez-Higueras, P. & Muñoz, E. & Almonacid, G. & Vidal, P.G., 2011. "High Concentrator PhotoVoltaics efficiencies: Present status and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1810-1815, May.
    3. Han, Xinyue & Wang, Yiping & Zhu, Li, 2011. "Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids," Applied Energy, Elsevier, vol. 88(12), pages 4481-4489.
    4. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    5. Hj. Othman, Mohd. Yusof & Yatim, Baharudin & Sopian, Kamaruzzaman & Abu Bakar, Mohd. Nazari, 2005. "Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins," Renewable Energy, Elsevier, vol. 30(13), pages 2005-2017.
    6. Amori, Karima E. & Taqi Al-Najjar, Hussein M., 2012. "Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq," Applied Energy, Elsevier, vol. 98(C), pages 384-395.
    7. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    8. Wang, Gang & Yao, Yubo & Lin, Jianqing & Chen, Zeshao & Hu, Peng, 2020. "Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter," Renewable Energy, Elsevier, vol. 155(C), pages 1091-1102.
    9. Su, Yan & Chan, Lai-Cheong & Shu, Lianjie & Tsui, Kwok-Leung, 2012. "Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems," Applied Energy, Elsevier, vol. 93(C), pages 319-326.
    10. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    11. Tong, Yijie & Kim, Jinhyun & Cho, Honghyun, 2015. "Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid," Renewable Energy, Elsevier, vol. 83(C), pages 463-473.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatih Selimefendigil & Damla Okulu & Hakan F. Öztop, 2023. "Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law-Nanofluid-Assisted Cooling Channel," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    2. Basalike, Pie & Peng, Wang & Zhang, Jili, 2022. "Numerical study on the performance of photovoltaic thermal unit condenser with water/nanofluids as fluids medium," Renewable Energy, Elsevier, vol. 197(C), pages 606-616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Kaya, Hüseyin & Alkasem, Mohanad & Arslan, Kamil, 2020. "Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 267-284.
    3. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    4. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    5. Kim, Hyeongmin & Ham, Jeonggyun & Park, Chasik & Cho, Honghyun, 2016. "Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids," Energy, Elsevier, vol. 94(C), pages 497-507.
    6. Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
    7. Minjung Lee & Yunchan Shin & Honghyun Cho, 2020. "Performance Evaluation of Flat Plate and Vacuum Tube Solar Collectors by Applying a MWCNT/Fe 3 O 4 Binary Nanofluid," Energies, MDPI, vol. 13(7), pages 1-17, April.
    8. Khalifa Aliyu Ibrahim & Patrick Luk & Zhenhua Luo, 2023. "Cooling of Concentrated Photovoltaic Cells—A Review and the Perspective of Pulsating Flow Cooling," Energies, MDPI, vol. 16(6), pages 1-23, March.
    9. Naik, B. Kiran & Bhowmik, Mrinal & Muthukumar, P., 2019. "Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems," Renewable Energy, Elsevier, vol. 134(C), pages 1344-1361.
    10. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    11. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
    12. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    13. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    14. Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
    15. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    16. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    17. Loni, Reyhaneh & Asli-Ardeh, E. Askari & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental Study," Energy, Elsevier, vol. 164(C), pages 275-287.
    18. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    19. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    20. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:712-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.