IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1715-d341362.html
   My bibliography  Save this article

Performance Evaluation of Flat Plate and Vacuum Tube Solar Collectors by Applying a MWCNT/Fe 3 O 4 Binary Nanofluid

Author

Listed:
  • Minjung Lee

    (Department of Mechanical Engineering, Graduate School of Chosun University, 303 Pilmun-daero, Dong-gu, Gwangju 501-759, Korea)

  • Yunchan Shin

    (Department of Mechanical Engineering, Graduate School of Chosun University, 303 Pilmun-daero, Dong-gu, Gwangju 501-759, Korea)

  • Honghyun Cho

    (Department of Mechanical Engineering, Chosun University, 303 Pilmun-daero, Dong-gu, Gwangju 501-759, Korea)

Abstract

This study experimentally investigated the performance characteristics of water and MWCNT/Fe 3 O 4 binary nanofluid as a working fluid in a flat plate and vacuum tube solar collectors. As a result, the highest efficiency was 80.3% when 0.005 vol.% MWCNT/0.01 vol.% Fe 3 O 4 binary nanofluid was applied to the flat plate solar collector, which was a 17.6% increase in efficiency, compared to that when water was used. In the case of the vacuum tube solar collector, the highest efficiency was 79.8%, which was 24.9% higher than when water was applied. Besides, when the mass flux of MWCNT/Fe 3 O 4 binary nanofluid was changed from 420 to 598 kg/s·m 2 , the maximum efficiencies of the flat plate and vacuum tube solar collectors were increased by 7.8% and 8.3%, respectively. When the MWCNT/Fe 3 O 4 binary nanofluid was applied to the vacuum tube solar collector, the efficiency improvement was much more significant, and the high performance could be maintained for wide operating conditions, compared with the flat plate solar collector.

Suggested Citation

  • Minjung Lee & Yunchan Shin & Honghyun Cho, 2020. "Performance Evaluation of Flat Plate and Vacuum Tube Solar Collectors by Applying a MWCNT/Fe 3 O 4 Binary Nanofluid," Energies, MDPI, vol. 13(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1715-:d:341362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tong, Yijie & Kim, Jinhyun & Cho, Honghyun, 2015. "Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid," Renewable Energy, Elsevier, vol. 83(C), pages 463-473.
    2. Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
    3. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    4. Yuhang Gao & Chao Gao & Haizhen Xian & Xiaoze Du, 2018. "Thermal Properties of Solar Collector Comprising Oscillating Heat Pipe in a Flat-Plate Structure and Water Heating System in Low-Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-12, September.
    5. Panagiotis Karvounis & Dimitrios Koubogiannis & Elias Hontzopoulos & Antonios Hatziapostolou, 2019. "Numerical and Experimental Study of Flow Characteristics in Solar Collector Manifolds," Energies, MDPI, vol. 12(8), pages 1-17, April.
    6. Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.
    7. Zeng, Jia & Xuan, Yimin, 2018. "Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids," Applied Energy, Elsevier, vol. 212(C), pages 809-819.
    8. Orlando Montoya-Márquez & José Jassón Flores-Prieto, 2018. "Heat Removal Factor in Flat Plate Solar Collectors: Indoor Test Method," Energies, MDPI, vol. 11(10), pages 1-12, October.
    9. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahidinia, F. & Khorasanizadeh, H. & Aghaei, A., 2023. "Energy, exergy, economic and environmental evaluations of a finned absorber tube parabolic trough collector utilizing hybrid and mono nanofluids and comparison," Renewable Energy, Elsevier, vol. 205(C), pages 185-199.
    2. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis," Renewable Energy, Elsevier, vol. 141(C), pages 246-258.
    3. Kaya, Hüseyin & Alkasem, Mohanad & Arslan, Kamil, 2020. "Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 267-284.
    4. Gholipour, Shayan & Afrand, Masoud & Kalbasi, Rasool, 2020. "Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: Introducing helical coil and spiral tube adsorbent tubes," Renewable Energy, Elsevier, vol. 151(C), pages 772-781.
    5. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    6. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    7. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    8. Bazdidi-Tehrani, Farzad & Khabazipur, Arash & Vasefi, Seyed Iman, 2018. "Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector," Renewable Energy, Elsevier, vol. 122(C), pages 406-418.
    9. Su, Yan & Sui, Pengxiang & Davidson, Jane H., 2022. "A sub-continuous lattice Boltzmann simulation for nanofluid cooling of concentrated photovoltaic thermal receivers," Renewable Energy, Elsevier, vol. 184(C), pages 712-726.
    10. Kim, Hyeongmin & Ham, Jeonggyun & Park, Chasik & Cho, Honghyun, 2016. "Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids," Energy, Elsevier, vol. 94(C), pages 497-507.
    11. R. M. Mostafizur & M. G. Rasul & M. N. Nabi, 2021. "Energy and Exergy Analyses of a Flat Plate Solar Collector Using Various Nanofluids: An Analytical Approach," Energies, MDPI, vol. 14(14), pages 1-19, July.
    12. Sakhaei, Seyed Ali & Valipour, Mohammad Sadegh, 2019. "Performance enhancement analysis of The flat plate collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 186-204.
    13. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors," Renewable Energy, Elsevier, vol. 114(PB), pages 1376-1393.
    14. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 1801-1814.
    15. Loni, Reyhaneh & Asli-Ardeh, E. Askari & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental Study," Energy, Elsevier, vol. 164(C), pages 275-287.
    16. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    17. Moucun Yang & Sa Wang & Yuezhao Zhu & Robert A. Taylor & M.A. Moghimi & Yinfeng Wang, 2020. "Thermal Stability and Performance Testing of Oil-based CuO Nanofluids for Solar Thermal Applications," Energies, MDPI, vol. 13(4), pages 1-16, February.
    18. Yıldırım, Erdal & Yurddaş, Ali, 2021. "Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system," Renewable Energy, Elsevier, vol. 171(C), pages 1079-1096.
    19. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    20. Mehrali, Mohammad & Ghatkesar, Murali Krishna & Pecnik, Rene, 2018. "Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids," Applied Energy, Elsevier, vol. 224(C), pages 103-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1715-:d:341362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.