IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011289.html
   My bibliography  Save this article

Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches

Author

Listed:
  • Ataee, Sadegh
  • Ameri, Mehran
  • Askari, Ighball Baniasad
  • Keshtegar, Behrooz

Abstract

The thermodynamic modeling of a filled layer U-type was conducted considering the six water-based and Engine Oil (EO)-based nanofluids (NFs). The results demonstrated that Fe2O3/EO NF is efficient from the exergy efficiency point of view. While MWCNT/water NF outperforms from the energy efficiency aspect. Moreover, the outcome indicated that when (Tin−Tamb)/It increased above 0.04 (K m2/W), Ltube has no considerable effect on the exergy efficiency. Still, the length impact is noticeable regarding outlet temperature and energy efficiency. Furthermore, the advantage of the filled-type over the conventional ETSC is more prominent at low m˙ (e.g. 4.0 kg/h). So that ηex in the filled type with Fe2O3/EO is improved by 2.29 % and 3.70 %, respectively, for (Tin−Tamb)/It of 0 and 0.04. Moreover, the increase in m˙ of the water/based and oil-based NFs, respectively, between 6 and 10 kg/h and 8–20 kg/h is suggested from the energy efficiency aspect. The results of machine learning modeling revealed that three models namely group method for data handling (GMDH), response surface method (RSM), and modified response surface model (MRSM) are capable of estimating ηen and ηex. While MRSM outperforms the two other models in terms of (R2 | ηen = 0.9986 and RMSE| ηen = 0.7849; R2 |ηex = 0.9988 and RMSE| ηex= 0.1513).

Suggested Citation

  • Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011289
    DOI: 10.1016/j.energy.2024.131355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.