Multi-criteria optimization of nanofluid-based solar collector for enhanced performance: An explainable machine learning-driven approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135212
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
- L, Chilambarasan & Thangarasu, Vinoth & Ramasamy, Prakash, 2024. "Solar flat plate collector's heat transfer enhancement using grooved tube configuration with alumina nanofluids: Prediction of outcomes through artificial neural network modeling," Energy, Elsevier, vol. 289(C).
- Bertocchi, Rudi & Karni, Jacob & Kribus, Abraham, 2004. "Experimental evaluation of a non-isothermal high temperature solar particle receiver," Energy, Elsevier, vol. 29(5), pages 687-700.
- Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
- Mausam, Kuwar & Singh, Shiva & Ghosh, Subrata Kumar & Singh, Ravindra P., 2024. "Thermal performance modelling of solar flat plate parallel tube collector using ANN," Energy, Elsevier, vol. 303(C).
- Sourav Diwania & Maneesh Kumar & Rajeev Kumar & Arun Kumar & Varun Gupta & Pavan Khetrapal, 2024. "Machine learning-based thermo-electrical performance improvement of nanofluid-cooled photovoltaic–thermal system," Energy & Environment, , vol. 35(4), pages 1793-1817, June.
- Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
- Bhalla, Vishal & Khullar, Vikrant & Parupudi, Ranga Vihari, 2022. "Design and thermal analysis of nanofluid-based compound parabolic concentrator," Renewable Energy, Elsevier, vol. 185(C), pages 348-362.
- Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Thermodynamic modeling and performance optimization of nanofluid-based photovoltaic/thermal system using central composite design scheme of response surface methodology," Renewable Energy, Elsevier, vol. 225(C).
- Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ren, Kezheng & Liu, Jun & Wu, Zeyang & Liu, Xinglei & Nie, Yongxin & Xu, Haitao, 2024. "A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters," Applied Energy, Elsevier, vol. 355(C).
- Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
- Liu, Zhengxuan & Sun, Pengchen & Xie, Mingjing & Zhou, Yuekuan & He, Yingdong & Zhang, Guoqiang & Chen, Dachuan & Li, Shuisheng & Yan, Zhongjun & Qin, Di, 2021. "Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method," Renewable Energy, Elsevier, vol. 173(C), pages 401-414.
- Qin, Di & Liu, Zhengxuan & Zhou, Yuekuan & Yan, Zhongjun & Chen, Dachuan & Zhang, Guoqiang, 2021. "Dynamic performance of a novel air-soil heat exchanger coupling with diversified energy storage components—modelling development, experimental verification, parametrical design and robust operation," Renewable Energy, Elsevier, vol. 167(C), pages 542-557.
- Abd, Hareth Maher & Abdulrazzaq, Nabeel M. & Soheel, Ammar Hassan, 2024. "Solar air heater energy and exergy enhancement using a v-corrugated wire mesh absorber: An experimental comparison," Energy, Elsevier, vol. 309(C).
- He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Sun, Chunlei & Zou, Yuan & Qin, Caiyan & Chen, Meijie & Li, Xiaoke & Zhang, Bin & Wu, Xiaohu, 2022. "Solar absorption characteristics of SiO2@Au core-shell composite nanorods for the direct absorption solar collector," Renewable Energy, Elsevier, vol. 189(C), pages 402-411.
- Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
- Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
- Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
- Daghigh, Roonak & Arshad, Siamand Azizi, 2025. "Experimental and theoretical performance analysis of PVT-evacuated U-tube solar collectors with and without CPC integration," Energy, Elsevier, vol. 320(C).
- Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Comprehensive performance assessment of photovoltaic/thermal system using MWCNT/water nanofluid and novel finned multi-block nano-enhanced phase change material-based thermal collector: Energy, exergy," Energy, Elsevier, vol. 312(C).
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Kulkarni, Vismay V. & Bhalla, Vishal & Garg, Kapil & Tyagi, Himanshu, 2021. "Hybrid nanoparticles-laden fluid based spiral solar collector: A proof-of-concept experimental study," Renewable Energy, Elsevier, vol. 179(C), pages 1360-1369.
- Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
- de Risi, A. & Milanese, M. & Laforgia, D., 2013. "Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids," Renewable Energy, Elsevier, vol. 58(C), pages 134-139.
- Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
- Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
- Shahsavar, Amin & Jha, Prabhakar, 2024. "Experimentally exploring the synergy of rotating twisted tape turbulators and hybrid nanofluids for enhanced photovoltaic thermal system performance," Energy, Elsevier, vol. 313(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008540. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.