IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124004063.html
   My bibliography  Save this article

Thermodynamic modeling and performance optimization of nanofluid-based photovoltaic/thermal system using central composite design scheme of response surface methodology

Author

Listed:
  • Tyagi, Praveen Kumar
  • Kumar, Rajan

Abstract

This study develops and validates a programming code to demonstrate an iterative resolution analytical thermodynamic modeling method for nanofluid-based photovoltaic/thermal (PV/T) systems. The experimental validation of the model is conducted by constructing and testing a novel PV/T collector that incorporates a flow channel with a double-loop rectangular spiral design. Four different operating independent factors, including solar irradiation (G = 300–900 W/m2), ambient temperature as per climate condition of Jalandhar city of India in July (Ta = 283.15–313.15 K), the CuO-water nanofluid concentration (φ = 0.02–0.08%) and mass flow rate of nanofluid (ṁnf = 201–241 kg/h) are used for thermodynamic performance prediction. Mathematical correlations are developed for each of the dependent response factors, including energetic thermal power output, energetic electrical power output, exergetic thermal power output, and entropy generation. Correlations are based on operating independent factors and their interaction on proposed system performance. Different single and multiple optimization approaches aim to predict optimal dependent and independent factor values. The regression model proposed in this study recommends choosing G = 855.353 W/m2, Ta = 313.148 K, φ = 0.08%, and ṁnf = 201 kg/h in order to optimize the energetic and exergetic electrical and thermal power output while minimizing entropy generation.

Suggested Citation

  • Tyagi, Praveen Kumar & Kumar, Rajan, 2024. "Thermodynamic modeling and performance optimization of nanofluid-based photovoltaic/thermal system using central composite design scheme of response surface methodology," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004063
    DOI: 10.1016/j.renene.2024.120341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124004063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.