IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp305-314.html
   My bibliography  Save this article

TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach

Author

Listed:
  • Fudholi, Ahmad
  • Razali, Nur Farhana Mohd
  • Yazdi, Mohammad H.
  • Ibrahim, Adnan
  • Ruslan, Mohd Hafidz
  • Othman, Mohd Yusof
  • Sopian, Kamaruzzaman

Abstract

Nanofluids, which are new generation cooling fluids, have been found to improve the heat transfer coefficient and enhance the system performance in recent years. In this observation, TiO2/water nanofluid (with 0.5 wt% and 1 wt% TiO2) is used as a coolant to investigate the photovoltaic thermal (PVT) collector under solar radiation intensities of 500, 700 and 900 W/m2 and mass flow rates ranging from 0.012 kg/s to 0.0255 kg/s. At high solar radiation, the thermal energy efficiency is high but is inversely proportional to the electrical energy efficiency due to the increment in PV surface temperature. The energy efficiency of 1 wt% TiO2 nanofluid-based PVT collector is 85%–89% compared with 60%–76% of water-based collector at 0.0255 kg/s. The improvement in exergy efficiency of 1.0 wt% TiO2 is 6.02% compared with that of water-based collector at the mass flow rate of 0.0255 kg/s. In addition, a new theoretical approach model is developed to compare the theoretical and experimental results of the TiO2/water nanofluid-based PVT collector. Considerably close agreement between the new theoretical approaches and experimental is obtained with an accuracy of 97.6%–99.2%.

Suggested Citation

  • Fudholi, Ahmad & Razali, Nur Farhana Mohd & Yazdi, Mohammad H. & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Othman, Mohd Yusof & Sopian, Kamaruzzaman, 2019. "TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach," Energy, Elsevier, vol. 183(C), pages 305-314.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:305-314
    DOI: 10.1016/j.energy.2019.06.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nazri, Nurul Syakirah & Fudholi, Ahmad & Bakhtyar, Bardia & Yen, Chan Hoy & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2018. "Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 187-197.
    2. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    3. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    4. Yahya, M. & Fudholi, Ahmad & Sopian, Kamaruzzaman, 2017. "Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace," Renewable Energy, Elsevier, vol. 105(C), pages 22-29.
    5. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    6. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    7. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    8. Al-Waeli, Ali H.A. & Chaichan, Miqdam T. & Kazem, Hussein A. & Sopian, K. & Ibrahim, Adnan & Mat, Sohif & Ruslan, Mohd Hafidz, 2018. "Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant," Energy, Elsevier, vol. 151(C), pages 33-44.
    9. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    10. Fudholi, Ahmad & Sopian, Kamaruzzaman & Alghoul, M.A. & Ruslan, Mohd Hafidz & Othman, Mohd Yusof, 2015. "Performances and improvement potential of solar drying system for palm oil fronds," Renewable Energy, Elsevier, vol. 78(C), pages 561-565.
    11. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahsavar, Amin & Jha, Prabhakar & Arici, Muslum & Kefayati, Gholamreza, 2021. "A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors," Energy, Elsevier, vol. 220(C).
    2. Maadi, Seyed Reza & Navegi, Ali & Solomin, Evgeny & Ahn, Ho Seon & Wongwises, Somchai & Mahian, Omid, 2021. "Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluid," Energy, Elsevier, vol. 234(C).
    3. Eisapour, Amir Hossein & Eisapour, M. & Hosseini, M.J. & Shafaghat, A.H. & Talebizadeh Sardari, P. & Ranjbar, A.A., 2021. "Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis," Renewable Energy, Elsevier, vol. 169(C), pages 1351-1372.
    4. Cao, Yan & Sinaga, Nazaruddin & Pourhedayat, Samira & Dizaji, Hamed Sadighi, 2021. "Innovative integration of solar chimney ventilator, solar panel and phase change material; under real transient weather condition of Hong Kong through different months," Renewable Energy, Elsevier, vol. 174(C), pages 865-878.
    5. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    6. Askari, Ighball Baniasad & Shahsavar, Amin & Jamei, Mehdi & Calise, Francesco & Karbasi, Masoud, 2022. "A parametric assessing and intelligent forecasting of the energy and exergy performances of a dish concentrating photovoltaic/thermal collector considering six different nanofluids and applying two me," Renewable Energy, Elsevier, vol. 193(C), pages 149-166.
    7. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    2. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    3. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Nazri, Nurul Syakirah & Fudholi, Ahmad & Mustafa, Wan & Yen, Chan Hoy & Mohammad, Masita & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2019. "Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 132-144.
    5. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    6. Amged Al Ezzi & Miqdam T. Chaichan & Hasan S. Majdi & Ali H. A. Al-Waeli & Hussein A. Kazem & Kamaruzzaman Sopian & Mohammed A. Fayad & Hayder A. Dhahad & Talal Yusaf, 2022. "Nano-Iron Oxide-Ethylene Glycol-Water Nanofluid Based Photovoltaic Thermal (PV/T) System with Spiral Flow Absorber: An Energy and Exergy Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    7. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    9. Yahya, M. & Fudholi, Ahmad & Sopian, Kamaruzzaman, 2017. "Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace," Renewable Energy, Elsevier, vol. 105(C), pages 22-29.
    10. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    11. Ambreen, Tehmina & Kim, Man-Hoe, 2020. "Influence of particle size on the effective thermal conductivity of nanofluids: A critical review," Applied Energy, Elsevier, vol. 264(C).
    12. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    13. Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
    14. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    15. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    16. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    17. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    20. Bazdidi-Tehrani, Farzad & Khabazipur, Arash & Vasefi, Seyed Iman, 2018. "Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector," Renewable Energy, Elsevier, vol. 122(C), pages 406-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:305-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.