IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v92y2018icp187-197.html
   My bibliography  Save this article

Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors

Author

Listed:
  • Nazri, Nurul Syakirah
  • Fudholi, Ahmad
  • Bakhtyar, Bardia
  • Yen, Chan Hoy
  • Ibrahim, Adnan
  • Ruslan, Mohd Hafidz
  • Mat, Sohif
  • Sopian, Kamaruzzaman

Abstract

Photovoltaic–thermal (PVT) collectors can generate electrical and thermal energy simultaneously. The combination of these two technologies can reduce the required space, time installation and use of materials. PVT air collector present increased total efficiency by increasing solar radiation amount. This review presents the concepts and descriptions, as well as previous works conducted on thermoelectric (TE). A theoretical study of PVT-TE air collectors is also performed. Mathematical models are proposed and solved using iterative process based on the matrix inversion method. An improvement in energy yields can be obtained using TE solar collector technology because TE devices increase the energy conversion efficiency of the system. The annual cost (AC) and annual energy gain (AEG) of PVT-TE air collectors are determined. The cost–benefit ratio or AC per AEG (AC/AEG) is presented for different combinations of mass flow rate and number of TE to increase the feasibility of users in selecting the optimal design features that correspond to minimum AC/AEG.

Suggested Citation

  • Nazri, Nurul Syakirah & Fudholi, Ahmad & Bakhtyar, Bardia & Yen, Chan Hoy & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2018. "Energy economic analysis of photovoltaic–thermal-thermoelectric (PVT-TE) air collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 187-197.
  • Handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:187-197
    DOI: 10.1016/j.rser.2018.04.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118302752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.04.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faddouli, A. & Labrim, H. & Fadili, S. & Habchi, A. & Hartiti, B. & Benaissa, M. & Hajji, M. & EZ-Zahraouy, H. & Ntsoenzok, E. & Benyoussef, A., 2020. "Numerical analysis and performance investigation of new hybrid system integrating concentrated solar flat plate collector with a thermoelectric generator system," Renewable Energy, Elsevier, vol. 147(P1), pages 2077-2090.
    2. Montero, Francisco J. & Kumar, Ramesh & Lamba, Ravita & Escobar, Rodrigo A. & Vashishtha, Manish & Upadhyaya, Sushant & Guzmán, Amador M., 2022. "Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile," Energy, Elsevier, vol. 239(PB).
    3. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    5. Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Fudholi, Ahmad, 2018. "Photovoltaic thermal solar water collector designed with a jet collision system," Energy, Elsevier, vol. 161(C), pages 412-424.
    6. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo & Panagopoulos, Orestis, 2019. "Photovoltaic thermal collectors: Experimental analysis and simulation model of an innovative low-cost water-based prototype," Energy, Elsevier, vol. 179(C), pages 502-516.
    7. Fudholi, Ahmad & Razali, Nur Farhana Mohd & Yazdi, Mohammad H. & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Othman, Mohd Yusof & Sopian, Kamaruzzaman, 2019. "TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach," Energy, Elsevier, vol. 183(C), pages 305-314.
    8. Sadeghi, Hooman & Toghraie, Davood & Moazzami, Majid & Rezaei, Mohammad Mahdi & Dolatshahi, Milad, 2022. "Integrated long-term planning of conventional and renewable energy sources in Iran's off-grid networks," Renewable Energy, Elsevier, vol. 182(C), pages 134-162.
    9. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Youngjin Choi, 2022. "Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System," Energies, MDPI, vol. 15(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:187-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.